sachin sahu
成为会员时间:2021
白银联赛
7200 积分
成为会员时间:2021
本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。
完成「Introduction to Generative AI」、「Introduction to Large Language Models」和「Introduction to Responsible AI」課程,即可獲得技能徽章。通過最終測驗,就能展現您對生成式 AI 基本概念的掌握程度。 「技能徽章」是 Google Cloud 核發的數位徽章,用於表彰您對 Google Cloud 產品和服務的相關知識。您可以將技能徽章公布在社群媒體的個人資料中,向其他人分享您的成果。
這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。
這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
大家都知道,機器學習是發展最快的科技領域之一, 而 Google Cloud Platform 在這方面功不可沒。 GCP 提供多種 API,凡是與機器學習相關的任務,幾乎都能處理。您將在本入門課程的 實驗室,實際演練機器學習技術 在語言處理方面的應用,學會如何從文中擷取實體資訊、 執行情緒和語法分析,並使用 Speech-to-Text API 轉錄語音。
大數據、機器學習和人工智慧 (AI) 是時下熱門的 電腦相關話題,但這些領域相當專業,就算想要入門 也難以取得教材或資料。幸好,Google Cloud 提供了此領域的多種服務,而且容易使用。 參加這堂入門課程,您就能踏出第一步, 開始學習運用 BigQuery、Cloud Speech API 以及 Video Intelligence 等工具。
完成 從 BigQuery 資料取得深入分析結果 技能徽章入門課程,即可證明您具備下列技能: 撰寫 SQL 查詢、查詢公開資料表、將樣本資料載入 BigQuery、使用 BigQuery 的查詢驗證工具 排解常見語法錯誤,以及在 Looker Studio 中 透過連結 BigQuery 資料建立報表。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度,代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成本技能徽章課程及結業評量挑戰 實驗室,即可取得技能徽章並與他人分享。
Welcome to the Learn To Earn Cloud Challenge security track! These eight labs give you the keys to understanding GCP's powerful security suite. At the end of each lab, you'll have hands-on experience with securing your cloud. Complete this game to earn the Security game badge, and you'll be one step closer to collecting all four badges (see "what's next" below for more information). Race the clock to increase your score and watch your name rise on the leaderboard. Good luck!
Welcome to the Learn To Earn Cloud Challenge architecture track! These eight labs give you a blueprint of GCP's building blocks. At the end of each lab, you'll have hands-on experience with another tool or service to add to your resume. Complete this game to earn the Architecture game badge, and you'll be one step closer to collecting all four Learn to Earn Cloud Challenge badges (see "what's next" below for more information). Race the clock to increase your score and watch your name rise on the leaderboard. Good luck!
Welcome to the Learn To Earn Cloud Challenge data track! These eight labs give you a deep dive into GCP's data universe. At the end of each lab, you'll have another in-demand skill to add to your list. Complete this game to earn the Data game badge, and you'll be one step closer to collecting all four Learn to Earn Cloud Challenge badges (see "what's next" below for more information). Race the clock to increase your score and watch your name rise on the leaderboard. Good luck!
Welcome to the Learn To Earn Cloud Challenge! These eight labs give you a quick hands-on introduction to eight different GCP tools and services. At the end of each lab, you'll have another skill to add to your list. Complete this game to earn the Essentials game badge, and you'll be one step closer to collecting all four Learn to Earn Cloud Challenge badges (see "what's next" below for more information). Race the clock to increase your score and watch your name rise on the leaderboard. Good luck!
Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.
完成 透過 BigQuery 建構資料倉儲 技能徽章中階課程,即可證明您具備下列技能: 彙整資料以建立新資料表、排解彙整作業問題、利用聯集附加資料、建立依日期分區的資料表, 以及在 BigQuery 使用 JSON、陣列和結構體。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
In this Quest, you will delve deeper into the uses and capabilities of Amazon Redshift. You will use a remote SQL client to create and configure tables, and gain practice loading large data sets into Redshift. You will explore the effects of schema variations and compression. You will explore visualization of Redshift data, and connect Redshift with Amazon Machine Learning to create a predictive data model.
Scientists, developers, and other technologists from many different industries are taking advantage of AWS to perform big data analytics and meet the challenges of the increasing volume, variety, and velocity of digital information. AWS offers a portfolio of cloud computing services to help you manage big data by reducing costs, scaling to meet demand, and increasing the speed of innovation. In this quest, you’ll learn to work with advanced services for Big Data.
完成「運用 BigQuery ML 建立機器學習模型」技能徽章中階課程,即可證明您具備下列技能: 可使用 BigQuery ML 建立及評估機器學習模型,並根據資料進行預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與他人分享。
不想花費大把時間,想在幾分鐘內只靠 SQL,就建立好機器學習模型嗎?透過 BigQuery ML,資料分析師可以運用現有的 SQL 工具和技巧,建立、訓練、評估模型, 並使用模型進行預測,降低機器學習的使用門檻。在 本系列的實驗室,您會測試不同類型的模型,瞭解 優良模型應具備的條件。
完成 在 Compute Engine 實作負載平衡功能 技能徽章入門課程,即可證明您具備下列技能: 編寫 gcloud 指令和使用 Cloud Shell、在 Compute Engine 建立及部署虛擬機器, 以及設定網路和 HTTP 負載平衡器。 「技能徽章」是 Google Cloud 核發的 獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個課程及挑戰研究室 最終評量,即可取得技能徽章並與親友分享。
完成使用 BigQuery ML 為預測模型進行資料工程技能徽章中階課程, 即可證明自己具備下列知識與技能:運用 Dataprep by Trifacta 建構連至 BigQuery 的資料轉換 pipeline; 使用 Cloud Storage、Dataflow 和 BigQuery 建構「擷取、轉換及載入」(ETL) 工作負載, 以及使用 BigQuery ML 建構機器學習模型。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 這個課程及結業評量挑戰實驗室,即可取得數位徽章 並與他人分享。
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.