Hanane KARDI
Mitglied seit 2024
Mitglied seit 2024
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Fall in love with data this Valentine's. Get hands-on with labs that teach you everything from data exploration and filtering to dashboard alerts and Looker Studio magic. No prior experience needed—Game on!
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Cloud-Architektur: Entwerfen, umsetzen und verwalten abschließen. Dabei können Sie Fähigkeiten nachweisen, die für folgende Aufgaben nötig sind: eine öffentlich zugängliche Website mit Apache-Webservern bereitstellen, eine Compute Engine-VM mithilfe von Startscripts konfigurieren, sicheres RDP durch Nutzung von Firewallregeln und eines Windows-Bastion Hosts konfigurieren, ein Docker-Image in einem Kubernetes-Cluster bereitstellen und anschließend aktualisieren sowie eine Cloud SQL-Instanz erstellen und eine MySQL-Datenbank importieren. Diese Aufgabenreihe bietet eine gute Grundlage für bestimmte Themen, die Teil der Zertifizierungsprüfung zum Google Cloud Certified Professional Cloud Architect sind. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer …
Mit dem Skill-Logo zum Kurs Kostenoptimierung für die Google Kubernetes Engine weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Verwalten von Clustern für mehrere Mandanten, Überwachen der Ressourcenauslastung nach Namespace, Konfigurieren des Cluster- und Pod-Autoscalings zur Steigerung der Effizienz, Einrichten des Load Balancings zur optimalen Verteilung von Ressourcen und Implementieren von Aktivitäts- und Bereitschaftsprüfungen zum Sicherstellen von Anwendungszustand und Kosteneffektivität. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Google Cloud-Netzwerk einrichten abschließen. Dabei lernen Sie, wie Sie grundlegende Netzwerkaufgaben in Google Cloud ausführen. Sie richten ein benutzerdefiniertes Netzwerk ein, fügen Firewallregeln für Subnetze hinzu, erstellen VMs und testen dann die Latenz bei der Kommunikation zwischen den VMs. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Umgebung anwenden. Absolvieren Sie den Kurs und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu bekommen, das Sie in Ihrem Netzwerk posten können.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
Earn a Introductory skill badge by completing the Cloud Run functions: 3 Ways course, where you learn how to use Cloud Run functions through the Google Cloud console and on the command line.
Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo zum Kurs Informationen aus BigQuery-Daten ableiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Schreiben von SQL-Abfragen, Abfragen öffentlicher Tabellen, Laden von Beispieldaten in BigQuery, Beheben häufig auftretender Syntaxfehler mithilfe der Abfragevalidierung in BigQuery und Erstellen von Berichten in Looker Studio durch Herstellen einer Verbindung zu BigQuery-Daten. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.
MMit dem Skill-Logo zum Kurs Daten für Looker-Dashboards und ‑Berichte vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Filtern, Sortieren und Pivotieren von Daten, Zusammenführen der Ergebnisse von verschiedenen Looker-Explores sowie Verwenden von Funktionen und Operatoren zum Erstellen von Looker-Dashboards und ‑Berichten für Analyse und Visualisierung von Daten. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Umgebung anwenden. Absolvieren Sie diese Skill-Logo-Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
In diesem Anfängerkurs erhalten Sie Informationen über den Datenanalyse-Workflow in Google Cloud. Außerdem werden Ihnen die verfügbaren Tools zum Auswerten, Analysieren und Visualisieren von Daten sowie zur Freigabe Ihrer gewonnenen Erkenntnisse an Stakeholder vorgestellt. Anhand einer Fallstudie sowie von praxisorientierten Labs, Vorlesungen und Quizzen/Demos zeigt der Kurs, wie Rohdaten bereinigt und daraus wirkungsvolle Visualisierungen und Dashboards erstellt werden. Ganz gleich, ob Sie bereits mit Daten arbeiten und erfahren möchten, wie Sie in Google Cloud erfolgreich sein können, oder ob Sie sich beruflich weiterbilden möchten – dieser Kurs erleichtert Ihnen den Einstieg. Fast jeder, der bei seiner Arbeit Datenanalysen ausführt oder verwendet, kann von diesem Kurs profitieren.