Join Sign in

Mark Shay

Member since 2020

badge image Application Development - Python Earned Jul 27, 2020
badge image NCAA® March Madness®: Bracketology with Google Cloud Earned Jul 24, 2020
badge image BigQuery for Data Analysis Earned Jul 24, 2020
badge image BigQuery Basics for Data Analysts Earned Jul 24, 2020
badge image Data Catalog Fundamentals Earned Jul 24, 2020
badge image Engineer Data in Google Cloud Earned Jul 24, 2020
badge image Data Engineering Earned Jul 24, 2020
badge image BigQuery for Data Warehousing Earned Jul 23, 2020
badge image Cloud SQL Earned Jul 22, 2020
badge image Create and Manage Cloud Resources Earned Jul 22, 2020
badge image Google Cloud Essentials Earned Jul 22, 2020

In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.

Learn more

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

Learn more

Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.

Learn more

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Learn more

Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

Learn more

Earn a skill badge by completing the Engineer Data in Google Cloud quest, where you will learn how to: 1. Build data pipelines using Cloud Dataprep by Trifacta, Pub/Sub, and Dataflow. 2. Use Cloud IoT Core to collect and manage MQTT-based devices. 3. Use Cloud Storage, Dataflow, and BigQuery to perform ETL. 4. Build a machine learning model using BigQuery ML. 5. Use Cloud Composer to copy data across multiple locations. This quest is a great resource for understanding topics that will appear in the Google Cloud Certified Professional Data Engineer Certification. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

This advanced-level quest is unique amongst the other Qwiklabs offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Learn more

Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

Learn more

Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this fundamental-level quest, you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and highly available databases that run on GKE containers, Cloud SQL will give you the knowledge and experience needed so you can start integrating this service right away.

Learn more

Earn a skill badge by completing the Create and Manage Cloud Resources quest, where you learn how to do the following: Write gcloud commands and use Cloud Shell, create and deploy virtual machines in Compute Engine, run containerized applications on Google Kubernetes Engine, and configure network and HTTP load balancers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

In this introductory-level Quest, you will get hands-on practice with the Google Cloud’s fundamental tools and services. Google Cloud Essentials is the recommended first Quest for the Google Cloud learner - you will come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features. 1-minute videos walk you through key concepts for each lab.

Learn more