本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。
這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。
本課程針對評估生成式和預測式 AI 模型,向機器學習從業人員介紹相關的基礎工具、技術和最佳做法。模型評估是機器學習的重要領域,確保這類系統能在正式環境中提供可靠、準確且成效優異的結果。 學員將深入瞭解多種評估指標與方法,以及適用於不同模型類型和工作的應用方式。此外,也會特別介紹生成式 AI 模型帶來的獨特難題,並提供有效的應對策略。透過 Google Cloud Vertex AI 平台,學員將瞭解在模型挑選、最佳化和持續監控方面,該如何導入穩健的評估程序。
本課程旨在提供必要的知識和工具,協助您探索機器學習運作團隊在部署及管理生成式 AI 模型時面臨的獨特挑戰,並瞭解 Vertex AI 如何幫 AI 團隊簡化機器學習運作程序,打造成效非凡的生成式 AI 專案。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。