Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Tobias Samuel Sugandi

Date d'abonnement : 2024

Ligue d'Or

9090 points
Machine Learning Operations (MLOps) : premiers pas Earned fév. 26, 2025 EST
Implémenter des workflows DevOps dans Google Cloud Earned fév. 4, 2025 EST
Présentation de l'IA et du machine learning sur Google Cloud Earned déc. 30, 2024 EST
Guide de préparation pour devenir ingénieur professionnel en machine learning Earned déc. 21, 2024 EST
Introduction à l'analyse de données sur Google Cloud Earned déc. 19, 2024 EST

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Terminez le cours intermédiaire Implémenter des workflows DevOps dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de dépôts git avec Cloud Source Repositories, le lancement, la gestion et le scaling de déploiements sur Google Kubernetes Engine (GKE), et le développement de l'architecture de pipelines CI/CD qui automatisent la compilation d'images de conteneurs et leur déploiement vers GKE. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

Ce cours aide les participants à créer un plan de formation pour l'examen de certification afin de devenir ingénieur professionnel en machine learning (PMLE, Professional Machine Learning Engineer). Ils découvriront l'ampleur et le champ d'application des domaines abordés lors de l'examen. Ils détermineront s'ils sont prêts à passer l'examen et créeront leur propre plan de formation.

En savoir plus

Dans ce cours de niveau débutant, vous découvrirez le workflow d'analyse de données sur Google Cloud, ainsi que les outils que vous pouvez utiliser pour explorer, analyser et visualiser les données, et partager vos observations avec les personnes concernées. Grâce à une étude de cas, des ateliers pratiques, des leçons et des quiz/démos, ce cours vous montrera comment transformer des ensembles de données bruts en données exploitables dans des visualisations et des tableaux de bord percutants. Que vous travailliez déjà avec des données et souhaitiez apprendre à mettre Google Cloud pleinement à profit ou que vous cherchiez à progresser dans votre carrière, ce cours vous sera utile. La plupart des personnes qui effectuent ou utilisent des analyses de données dans leur travail en tireront des enseignements.

En savoir plus