Приєднатися Увійти

Apply your skills in Google Cloud console

Nils Dehn

Учасник із 2019

Professional Machine Learning Engineer Study Guide Earned лист. 10, 2024 EST
Принципи відповідального використання ШІ для розробників: інтерпретованість і прозорість Earned лист. 10, 2024 EST
Принципи відповідального використання ШІ для розробників: об’єктивність і упередженість Earned лист. 10, 2024 EST
Create Generative AI Apps on Google Cloud Earned жовт. 18, 2024 EDT
Generative AI Explorer - Vertex AI Earned жовт. 17, 2024 EDT
Machine Learning Operations (MLOps) for Generative AI Earned жовт. 17, 2024 EDT
Introduction to Large Language Models - Українська Earned жовт. 17, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned жовт. 17, 2024 EDT
Introduction to Generative AI - Українська Earned жовт. 17, 2024 EDT
Production Machine Learning Systems Earned жовт. 16, 2024 EDT
Build and Deploy Machine Learning Solutions on Vertex AI Earned жовт. 9, 2024 EDT
Classify Images with TensorFlow on Google Cloud Earned жовт. 3, 2024 EDT
BigQuery for Machine Learning Earned жовт. 1, 2024 EDT
Introduction to AI and Machine Learning on Google Cloud Earned вер. 24, 2024 EDT
Serverless Data Processing with Dataflow: Operations Earned трав. 21, 2024 EDT
Trust and Security with Google Cloud Earned квіт. 30, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned квіт. 30, 2024 EDT
Essential Google Cloud Infrastructure: Foundation Earned квіт. 29, 2024 EDT
Створення сітки даних за допомогою Dataplex Earned квіт. 26, 2024 EDT
Serverless Data Processing with Dataflow: Develop Pipelines Earned квіт. 24, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned бер. 31, 2024 EDT
Підготовка даних для інтерфейсів API машинного навчання в Google Cloud Earned бер. 31, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned бер. 26, 2024 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned бер. 26, 2024 EDT
Create ML Models with BigQuery ML Earned бер. 26, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned бер. 25, 2024 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned бер. 25, 2024 EDT
Derive Insights from BigQuery Data Earned бер. 25, 2024 EDT
Building Batch Data Pipelines on Google Cloud Earned бер. 24, 2024 EDT
Build a Data Warehouse with BigQuery Earned бер. 23, 2024 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned бер. 23, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals - українська Earned бер. 19, 2024 EDT
Derive Insights from BigQuery Data Earned січ. 6, 2023 EST
Implement Cloud Security Fundamentals on Google Cloud Earned січ. 6, 2023 EST
Deploy Kubernetes Applications on Google Cloud Earned січ. 6, 2023 EST
Scaling with Google Cloud Operations Earned січ. 2, 2023 EST
Modernize Infrastructure and Applications with Google Cloud Earned січ. 2, 2023 EST
Exploring Data Transformation with Google Cloud Earned січ. 2, 2023 EST
Digital Transformation with Google Cloud Earned січ. 2, 2023 EST
Google Cloud Fundamentals: Core Infrastructure - Yкраїнська Earned січ. 2, 2023 EST
DEPRECATED Exploring APIs Earned січ. 2, 2023 EST
Using the Cloud SDK Command Line Earned груд. 30, 2022 EST
Build a Secure Google Cloud Network Earned груд. 30, 2022 EST
Create and Manage Cloud Resources Earned груд. 30, 2022 EST
Налаштування мережі Google Cloud Earned бер. 24, 2022 EDT
Cloud Logging Earned бер. 24, 2022 EDT
DEPRECATED Google Cloud's Operations Suite on GKE Earned бер. 24, 2022 EDT
Monitor and Log with Google Cloud Observability Earned бер. 23, 2022 EDT
Anthos Service Mesh Earned бер. 11, 2022 EST
[DEPRECATED] Secure Workloads in Google Kubernetes Engine Earned січ. 14, 2022 EST
Kubernetes in Google Cloud Earned січ. 10, 2022 EST
Build Infrastructure with Terraform on Google Cloud Earned січ. 8, 2022 EST
Implement DevOps Workflows in Google Cloud Earned груд. 9, 2021 EST
Налаштування середовища для розробки додатка в Google Cloud Earned лист. 26, 2021 EST
Налаштування розподілу навантаження в Compute Engine Earned лист. 24, 2021 EST

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Докладніше

У цьому курсі розглядаються поняття інтерпретованості й прозорості штучного інтелекту, а також їх важливість для розробників. Ви дізнаєтеся про практичні методи й інструменти, які дають змогу досягти інтерпретованості й прозорості даних і моделей штучного інтелекту.

Докладніше

Під час цього курсу ви зможете ознайомитися з концепціями відповідального підходу й принципами щодо штучного інтелекту. Ви дізнаєтеся про практичні методи виявлення об’єктивності й упередженості в роботі ШІ та технологій машинного навчання, а також ознайомитеся зі способами мінімізувати упередженість. У курсі розглядаються практичні методи й інструменти для впровадження відповідального підходу до ШІ за допомогою продуктів Google Cloud і інструментів із відкритим кодом.

Докладніше

Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.

Докладніше

The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.

Докладніше

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Докладніше

У цьому ознайомлювальному курсі мікронавчання ви дізнаєтеся, що таке великі мовні моделі, де вони використовуються і як підвищити їх ефективність коригуванням запитів. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучного інтелекту.

Докладніше

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Докладніше

Це ознайомлювальний курс мікронавчання, який має пояснити, що таке генеративний штучний інтелект, як він використовується й чим відрізняється від традиційних методів машинного навчання. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучногоінтелекту.

Докладніше

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Докладніше

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Докладніше

Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.

Докладніше

Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.

Докладніше

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Докладніше

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Докладніше

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.

Докладніше

Пройдіть вступний кваліфікаційний курс Створення сітки даних за допомогою Dataplex, щоб продемонструвати свої навички створення такої сітки для покращеної безпеки даних, керування ними й пошуку в Google Cloud. Ви потренуєтеся й перевірите свої навички щодо позначення тегами об’єктів, призначення ролей IAM і перевірки якості даних у Dataplex. Кваліфікаційний значок – це ексклюзивна цифрова відзнака, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud, а також застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс та підсумковий тест.

Докладніше

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Докладніше

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Докладніше

Пройдіть вступний кваліфікаційний курс Підготовка даних для інтерфейсів API машинного навчання в Google Cloud, щоб продемонструвати свої навички щодо очистки даних за допомогою сервісу Dataprep by Trifacta, запуску конвеєрів даних у Dataflow, створення кластерів і запуску завдань Apache Spark у Dataproc, а також виклику API машинного навчання, зокрема Cloud Natural Language API, Google Cloud Speech-to-Text API і Video Intelligence API. Кваліфікаційний значок – це ексклюзивна цифрова відзнака, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud і можете застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Докладніше

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Докладніше

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Докладніше

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Докладніше

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Докладніше

Complete the introductory Derive Insights from BigQuery Data skill badge to demonstrate skills in the following: write SQL queries, query public tables, load sample data into BigQuery, troubleshoot common syntax errors with the query validator in BigQuery, and create reports in Looker Studio by connecting to BigQuery data. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Докладніше

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Докладніше

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Докладніше

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Докладніше

Під час курсу ви зможете ознайомитися з продуктами й сервісами Google Cloud для роботи з масивами даних і машинним навчанням, які підтримують життєвий цикл роботи з даними для тренування моделей штучного інтелекту. У курсі розглядаються процеси, проблеми й переваги створення конвеєру масиву даних і моделей машинного навчання з Vertex AI у Google Cloud.

Докладніше

Complete the introductory Derive Insights from BigQuery Data skill badge to demonstrate skills in the following: write SQL queries, query public tables, load sample data into BigQuery, troubleshoot common syntax errors with the query validator in BigQuery, and create reports in Looker Studio by connecting to BigQuery data. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Докладніше

Complete the intermediate Implement Cloud Security Fundamentals on Google Cloud skill badge to demonstrate skills in the following: creating and assigning roles with Identity and Access Management (IAM); creating and managing service accounts; enabling private connectivity across virtual private cloud (VPC) networks; restricting application access using Identity-Aware Proxy; managing keys and encrypted data using Cloud Key Management Service (KMS); and creating a private Kubernetes cluster. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Докладніше

Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.

Докладніше

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

Докладніше

Курс "Знайомство з Google Cloud: основна інфраструктура" охоплює важливі поняття й терміни щодо використання Google Cloud. Переглядаючи відео й виконуючи практичні завдання, слухачі ознайомляться з різними сервісами Google Cloud для обчислень і зберігання даних, а також важливими ресурсами й інструментами для керування правилами. Крім того, вони зможуть їх порівнювати.

Докладніше

Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.

Докладніше

For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.

Докладніше

Earn a skill badge by completing the Build a Secure Google Cloud Network skill badge course, where you will learn about multiple networking-related resources to build, scale, and secure your applications on Google Cloud.

Докладніше

Пройдіть квест Create and Manage Cloud Resources й отримайте skill badge. Ви навчитеся виконувати наведені нижче дії. Писати команди gcloud і використовувати Cloud Shell, створювати й розгортати віртуальні машини в Compute Engine, запускати контейнерні додатки за допомогою Google Kubernetes Engine, а також налаштовувати розподілювачі навантаження для мережі й HTTP.Skill badge – це ексклюзивна цифрова винагорода, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud, а також застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати skill badge й показати його колегам, пройдіть цей квест і підсумковий тест.

Докладніше

Щоб отримати кваліфікаційний значок, пройдіть курс Налаштування мережі Google Cloud. У ньому ви дізнаєтеся про різні способи розгортання й моніторингу додатків, зокрема навчитеся визначати ролі керування ідентифікацією і доступом, надавати або вилучати доступ до проектів, створювати мережі VPC, розгортати й відстежувати віртуальні машини Compute Engine, писати запити SQL, а також по-різному вводити додатки в дію за допомогою Kubernetes. Кваліфікаційний значок – це ексклюзивна цифрова відзнака, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud, а також застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.

Докладніше

In this fundamental-level course, you will learn the ins and outs of Google Cloud's operations suite running on Google Kubernetes Engine, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. The labs in this course will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials course. Additional lab experience with the labs in the Baseline - Infrastructure course will also be useful. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the additional challenge lab at the end of this course to receive an exclusive Google Cloud digital badge.

Докладніше

Complete the introductory Monitor and Log with Google Cloud Observability skill badge to demonstrate skills in the following: monitoring virtual machines in Compute Engine, utilizing Cloud Monitoring for multi-project oversight, extending monitoring and logging capabilities to Cloud Functions, creating and sending custom application metrics, and configuring Cloud Monitoring alerts based on custom metrics. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.

Докладніше

This intermediate-level quest is unique among Qwiklabs quests. These labs have been curated to give operators hands-on practice with Anthos—a new, open application modernization platform on Google Cloud. Anthos enables you to build and manage modern hybrid applications. Tasks include: installing service mesh, collecting telemetry, and securing your microservices with service mesh policies. This quest is composed of labs targeted to teach you everything you need to know to introduce service mesh, and Anthos, into your next hybrid cloud project.

Докладніше

Earn a skill badge by completing the Secure Workloads in Google Kubernetes Engine quest, where you learn about security at scale on Google Kubernetes Engine (GKE) including how to: migrate containers from virtual machines to Google Kubernetes Engine, restrict network connections in GKE using firewalls and Network Policies, use role-based access controls (RBAC) in GKE, use Binary Authorization for security controls of your images, secure applications in GKE using 3 access levels: host, network, Kubernetes API, and harden GKE cluster configurations. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Докладніше

Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.

Докладніше

Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.

Докладніше

Complete the intermediate Implement DevOps Workflows in Google Cloud skill badge to demonstrate skills in the following: creating git repositories with Cloud Source Repositories, launching, managing, and scaling deployments on Google Kubernetes Engine (GKE), and architecting CI/CD pipelines that automate container image builds and deployments to GKE. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.

Докладніше

Щоб отримати кваліфікаційний значок, пройдіть курс Налаштування середовища для розробки додатка в Google Cloud. У ньому ви навчитеся створювати й підключати хмарну інфраструктуру, спрямовану на зберігання даних, за допомогою базових можливостей таких технологій, як Cloud Storage, система керування ідентифікацією і доступом, Cloud Functions та Pub/Sub. Кваліфікаційний значок – це ексклюзивна цифрова відзнака, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud, а також застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

Пройдіть вступний кваліфікаційний курс Налаштування розподілу навантаження в Compute Engine, щоб продемонструвати свої навички написання команд gcloud і використання Cloud Shell, створення й розгортання віртуальних машин у Compute Engine, а також налаштування мережі й розподілювачів навантаження HTTP. Кваліфікаційний значок – це ексклюзивний цифровий значок від Google Cloud, який засвідчує, що ви знаєтеся на продуктах і сервісах цієї платформи й можете застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше