vinay singh
회원 가입일: 2025
실버 리그
21834포인트
회원 가입일: 2025
This video covers how to personalize your Gemini results in Google Workspace. Learn to incorporate documents and research papers directly into your prompts using the "@" symbol to get more targeted and relevant AI output tailored to your needs.
Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.
This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.
인공지능(AI)은 혁신적인 가능성을 제공하지만 새로운 보안 문제의 원인이 되기도 합니다. 이 과정에서는 보안 및 데이터 보호 리더가 조직 내에서 AI를 안전하게 관리하는 데 필요한 전략을 살펴봅니다. AI 관련 위험을 사전에 식별 및 완화하고, 민감한 정보를 보호하며, 규정을 준수하고, 복원력 높은 AI 인프라를 빌드하는 프레임워크를 학습합니다. 이러한 전략이 실제 시나리오에서 어떻게 적용되는지 살펴보기 위해 4가지 산업별 사례를 선별했습니다.
이 과정에서는 AI 개인 정보 보호 및 안전에 관한 중요한 주제를 소개합니다. Google Cloud 제품과 오픈소스 도구를 사용하여 AI 개인 정보 보호 및 안전 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.
이 과정에서는 AI 해석 가능성과 투명성의 개념을 소개합니다. 개발자와 엔지니어에게 AI 투명성이 얼마나 중요한지를 설명합니다. 데이터와 AI 모델 모두에서 해석 가능성과 투명성을 구현하는 데 도움이 되는 실용적인 방법과 도구를 살펴봅니다.
중급 Vertex AI의 Gemini API로 생성형 AI 살펴보기 기술 배지 과정을 완료하여 텍스트를 생성하고, 향상된 콘텐츠 제작을 위해 이미지 및 동영상을 분석하고, Gemini API 내에서 함수 호출 기법을 적용하는 기술 역량을 입증하세요. 정교한 Gemini 기법을 활용하고, 멀티모달 콘텐츠 생성을 살펴보고, AI 기반 프로젝트의 기능을 확장하는 방법을 알아보세요.
이 과정에서는 책임감 있는 AI라는 개념과 AI 원칙을 소개합니다. 공정성과 편향을 실질적으로 식별하고 AI/ML 실무에서 편향을 완화하는 기법을 알아봅니다. Google Cloud 제품과 오픈소스 도구를 사용하여 책임감 있는 AI 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.
이 과정은 머신러닝 실무자에게 생성형 AI 모델과 예측형 AI 모델을 평가하는 데 필요한 도구, 기술, 권장사항을 제공합니다. 모델 평가는 프로덕션 단계의 ML 시스템이 안정적이고 정확하고 성능이 우수한 결과를 제공할 수 있게 하는 중요한 분야입니다. 강의 참가자는 다양한 평가 측정항목, 방법, 각각 다른 모델 유형과 작업에 적합한 애플리케이션에 대해 깊이 있게 이해할 수 있습니다. 이 과정에서는 생성형 AI 모델의 고유한 문제를 강조하고 이를 효과적으로 해결하기 위한 전략을 소개합니다. 강의 참가자는 Google Cloud의 Vertex AI Platform을 활용해 모델 선택, 최적화, 지속적인 모니터링을 위한 견고한 평가 프로세스를 구현하는 방법을 알아볼 수 있습니다.
중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
중급 Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 기술 배지 과정을 완료하여 텍스트 생성, Python SDK와 Gemini API를 사용한 함수 호출 적용, Cloud Run으로 Streamlit 애플리케이션 배포 작업과 관련된 기술 역량을 입증하세요. 텍스트 생성을 위해 Gemini에 프롬프트를 입력하는 여러 가지 방법과 Cloud Shell을 사용해 Streamlit 애플리케이션을 테스트하고 반복하는 방법, Streamlit 애플리케이션을 Cloud Run에 배포된 Docker 컨테이너로 패키징하는 방법을 배울 수 있습니다.
초급 'Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기' 기술 배지 과정을 완료하여, 이미지 인식, 자연어 처리, Google의 강력한 Gemini 및 Imagen 모델을 사용한 이미지 생성, Vertex AI Platform에 애플리케이션 배포 등의 기술을 입증하세요.
이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.
초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.