Приєднатися Увійти

Apply your skills in Google Cloud console

RonnyCloud GOOGLEUSER

Учасник із 2024

Бронзова ліга

Кількість балів: 14105
Build a Data Warehouse with BigQuery Earned лип. 4, 2025 EDT
Створення сітки даних за допомогою Dataplex Earned черв. 1, 2025 EDT
Introduction to Data Engineering on Google Cloud Earned бер. 30, 2025 EDT
Work with Gemini Models in BigQuery Earned лют. 23, 2025 EST
Boost Productivity with Gemini in BigQuery Earned лют. 16, 2025 EST
Serverless Data Processing with Dataflow: Foundations Earned лют. 2, 2025 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned січ. 18, 2025 EST

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

Докладніше

Пройдіть вступний кваліфікаційний курс Створення сітки даних за допомогою Dataplex, щоб продемонструвати свої навички створення такої сітки для покращеної безпеки даних, керування ними й пошуку в Google Cloud. Ви потренуєтеся й перевірите свої навички щодо позначення тегами об’єктів, призначення ролей IAM і перевірки якості даних у Dataplex.

Докладніше

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

Докладніше

This course demonstrates how to use AI/ML models for generative AI tasks in BigQuery. Through a practical use case involving customer relationship management, you learn the workflow of solving a business problem with Gemini models. To facilitate comprehension, the course also provides step-by-step guidance through coding solutions using both SQL queries and Python notebooks.

Докладніше

This course explores Gemini in BigQuery, a suite of AI-driven features to assist data-to-AI workflow. These features include data exploration and preparation, code generation and troubleshooting, and workflow discovery and visualization. Through conceptual explanations, a practical use case, and hands-on labs, the course empowers data practitioners to boost their productivity and expedite the development pipeline.

Докладніше

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Докладніше

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Докладніше