Join Sign in

Apply your skills in Google Cloud console

RonnyCloud GOOGLEUSER

Member since 2024

Bronze League

14105 points
Build a Data Warehouse with BigQuery Earned июля 4, 2025 EDT
Build a Data Mesh with Dataplex Earned июня 1, 2025 EDT
Introduction to Data Engineering on Google Cloud Earned марта 30, 2025 EDT
Work with Gemini Models in BigQuery Earned февр. 23, 2025 EST
Boost Productivity with Gemini in BigQuery Earned февр. 16, 2025 EST
Serverless Data Processing with Dataflow: Foundations Earned февр. 2, 2025 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned янв. 18, 2025 EST

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

Learn more

Complete the introductory Build a Data Mesh with Dataplex skill badge to demonstrate skills in the following: building a data mesh with Dataplex to facilitate data security, governance, and discovery on Google Cloud. You practice and test your skills in tagging assets, assigning IAM roles, and assessing data quality in Dataplex.

Learn more

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

Learn more

This course demonstrates how to use AI/ML models for generative AI tasks in BigQuery. Through a practical use case involving customer relationship management, you learn the workflow of solving a business problem with Gemini models. To facilitate comprehension, the course also provides step-by-step guidance through coding solutions using both SQL queries and Python notebooks.

Learn more

This course explores Gemini in BigQuery, a suite of AI-driven features to assist data-to-AI workflow. These features include data exploration and preparation, code generation and troubleshooting, and workflow discovery and visualization. Through conceptual explanations, a practical use case, and hands-on labs, the course empowers data practitioners to boost their productivity and expedite the development pipeline.

Learn more

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Learn more

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Learn more