Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, te ayudará a usar los productos y servicios de Google para desarrollar, probar, implementar y administrar aplicaciones. Con la ayuda de Gemini, aprenderás a desarrollar y compilar una aplicación web, corregir errores de la aplicación, desarrollar pruebas y consultar datos. A través de un lab práctico, comprobarás cómo Gemini mejora el ciclo de vida del desarrollo de software (SDLC). Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Este es el quinto de cinco cursos del Certificado de Google Cloud Data Analytics. En este curso, combinarás y aplicarás los conocimientos y las habilidades fundamentales que se enseñaron del curso 1 al 4 en un proyecto final práctico que se enfoca en el proyecto del ciclo de vida completo de los datos. Practicarás usando herramientas basadas en la nube para adquirir, almacenar, procesar, analizar, visualizar y comunicar estadísticas de datos de manera eficaz. Al final del curso, habrás completado un proyecto en el que demuestras tu dominio en cuanto a estructurar datos de múltiples fuentes con eficacia, presentar soluciones a una variedad de partes interesadas y visualizar estadísticas de datos usando software basado en la nube. También te prepararás actualizando tu currículum y practicando técnicas de entrevista para postularte a trabajos y asistir a entrevistas.
A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.
En este curso, aprenderás cómo Gemini, un colaborador de Google Cloud potenciado por IA generativa, ayuda a los administradores a aprovisionar infraestructuras. Descubrirás cómo darle instrucciones a Gemini para que explique infraestructuras, implemente clústeres de GKE y actualice la infraestructura existente. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de implementación de GKE. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Muchas empresas tradicionales usan aplicaciones y sistemas heredados que no pueden adecuarse a las expectativas de los clientes actuales. A menudo los líderes empresariales deben elegir entre mantener sus sistemas de TI anticuados o invertir en nuevos productos y servicios. En “Modernize Infrastructure and Applications with Google Cloud”, se exploran estos desafíos y se ofrecen soluciones para superarlos con la tecnología de la nube. Como parte de la ruta de aprendizaje de Cloud Digital Leader, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
En este curso, aprenderás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a los desarrolladores a compilar aplicaciones. Aprenderás a darle instrucciones a Gemini para que explique códigos, recomiende servicios de Google Cloud y genere código para tus aplicaciones. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de desarrollo de aplicaciones. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.
A medida que las organizaciones trasladan sus datos y aplicaciones a la nube, deben enfrentar nuevos desafíos de seguridad. En el curso Trust and Security with Google Cloud, se exploran los conceptos básicos de la seguridad en la nube, el valor del enfoque multicapas de Google Cloud para la seguridad de la infraestructura y cómo Google se gana y mantiene la confianza de los clientes en la nube. Como parte de la ruta de aprendizaje de Cloud Digital Leader, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
La inteligencia artificial (IA) y el aprendizaje automático (AA) representan una evolución importante en las tecnologías de la información que están transformando rápidamente una amplia variedad de sectores. En el curso “Innovating with Google Cloud Artificial Intelligence”, se exploran las maneras en que las organizaciones pueden usar la IA y el AA para transformar sus procesos empresariales. Como parte de la ruta de aprendizaje de Cloud Digital Leader, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los estudiantes obtendrán experiencia práctica con la transferencia de transmisión de Vertex AI Feature Store en la capa de SDK.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En esta ruta de aprendizaje, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Google Workspace.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.
La tecnología de Cloud puede aportar un gran valor a una organización y, si la combinamos con datos, podemos generar aún más valor y crear nuevas experiencias para los clientes.En “Exploring Data Transformation with Google Cloud”, se explora el valor que los datos pueden aportar a una organización y las formas en que Google Cloud puede hacer que estos sean útiles y accesibles.Como parte de la ruta de aprendizaje de Cloud Digital Leader, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…
En este curso acelerado on demand, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, máquinas virtuales y servicios de aplicaciones. Aprenderás a usar Google Cloud mediante la consola y Cloud Shell. También te familiarizarás con la función de un arquitecto de nube, enfoques para el diseño de la infraestructura y la configuración de redes virtuales con una nube privada virtual (VPC), proyectos, redes, subredes, direcciones IP, rutas y reglas de firewall.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
Completa los cursos Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI para obtener una insignia de habilidad. Aprueba el cuestionario final para demostrar que entiendes los conceptos básicos sobre la IA generativa. Una insignia de habilidad es una insignia digital que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma. Para compartir tu insignia de habilidad, establece tu perfil como público y agrega la insignia a tu perfil de redes sociales.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.
Organizaciones de todos los tamaños están aprovechando la potencia y flexibilidad de la nube para transformar sus operaciones. Sin embargo, administrar y escalar eficazmente los recursos en la nube puede ser una tarea compleja. En Scaling with Google Cloud Operations, se exploran los conceptos fundamentales de las operaciones modernas, la confiabilidad y la resiliencia en la nube, y cómo Google Cloud puede ayudar con esas tareas. Como parte de la ruta de aprendizaje de Cloud Digital Leader, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Muchas empresas tradicionales usan aplicaciones y sistemas heredados que no pueden adecuarse a las expectativas de los clientes actuales. A menudo los líderes empresariales deben elegir entre mantener sus sistemas de TI anticuados o invertir en nuevos productos y servicios. En “Modernize Infrastructure and Applications with Google Cloud”, se exploran estos desafíos y se ofrecen soluciones para superarlos con la tecnología de la nube. Como parte de la ruta de aprendizaje de Cloud Digital Leader, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Existe mucho entusiasmo sobre la tecnología de la nube y la transformación digital, pero también muchas preguntas sin respuesta. Por ejemplo: ¿Qué es la tecnología de la nube? ¿Qué significa transformación digital? ¿De qué manera puede ser útil la tecnología de la nube para la organización? ¿Cómo se puede comenzar? Si te has hecho alguna de esas preguntas, estás en el lugar indicado. En este curso, se proporciona una descripción general de los tipos de oportunidades y desafíos a los que las empresas suelen enfrentarse en su recorrido de transformación digital. Si quieres aprender sobre la tecnología de la nube para sobresalir en tu rol y ayudar a desarrollar el futuro de tu empresa, entonces este curso introductorio sobre transformación digital es para ti. Este curso es parte de la ruta de aprendizaje de Cloud Digital Leader.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.