ANUPAMA SHARMA
Membro dal giorno 2023
Membro dal giorno 2023
Master Google Cloud skills through hands-on labs and friendly competition! Cloud Hero challenges you to conquer a series of Cloud Skills Boost labs, putting your newfound knowledge to practice. Earn points for completing labs accurately, and rack up bonus points for speed. The leaderboard lets you see how you stack up against your peers – can you rise to the top? Remember to click "End" after finishing each lab to claim your well-deserved points.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
Questo corso spiega agli studenti come creare soluzioni efficienti e ad alta affidabilità su Google Cloud utilizzando pattern di progettazione comprovati. È la continuazione del corso Progettazione dell'architettura con Google Compute Engine o Progettazione dell'architettura con Google Kubernetes Engine e presuppone che si abbia esperienza pratica con le tecnologie esaminate in uno dei due corsi. Attraverso una combinazione di presentazioni, attività di progettazione e lab pratici, i partecipanti impareranno a definire e bilanciare i requisiti aziendali e tecnici per progettare deployment Google Cloud estremamente affidabili, sicuri, economicamente convenienti e ad alta disponibilità.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.