Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

ANUPAMA SHARMA

Mitglied seit 2023

FinOps - Core optimisation Earned Mai 12, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned Dez 18, 2024 EST
Serverless Data Processing with Dataflow: Operations Earned Nov 10, 2024 EST
Machine Learning Operations (MLOps) für generative KI Earned Nov 4, 2024 EST
DEPRECATED Cloud Operations and Service Mesh with Anthos Earned Sep 14, 2024 EDT
Reliable Google Cloud Infrastructure: Design and Process Earned Sep 13, 2024 EDT
Logging and Monitoring in Google Cloud Earned Sep 10, 2024 EDT

Master Google Cloud skills through hands-on labs and friendly competition! Cloud Hero challenges you to conquer a series of Cloud Skills Boost labs, putting your newfound knowledge to practice. Earn points for completing labs accurately, and rack up bonus points for speed. The leaderboard lets you see how you stack up against your peers – can you rise to the top? Remember to click "End" after finishing each lab to claim your well-deserved points.

Weitere Informationen

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Weitere Informationen

Dieser Kurs vermittelt Ihnen das Wissen und die nötigen Tools, um die speziellen Herausforderungen zu erkennen, mit denen MLOps-Teams bei der Bereitstellung und Verwaltung von Modellen basierend auf generativer KI konfrontiert sind. Sie erfahren, wie KI-Teams durch Vertex AI dabei unterstützt werden, MLOps-Prozesse zu optimieren und mit Projekten erfolgreich zu sein, in denen generative KI zum Einsatz kommt.

Weitere Informationen

Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.

Weitere Informationen

This course equips students to build highly reliable and efficient solutions on Google Cloud using proven design patterns. It is a continuation of the Architecting with Google Compute Engine or Architecting with Google Kubernetes Engine courses and assumes hands-on experience with the technologies covered in either of those courses. Through a combination of presentations, design activities, and hands-on labs, participants learn to define and balance business and technical requirements to design Google Cloud deployments that are highly reliable, highly available, secure, and cost-effective.

Weitere Informationen

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Weitere Informationen