Leonardi Leonardi
Miembro desde 2020
Liga de Plata
2200 puntos
Miembro desde 2020
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
Si eres un desarrollador principiante de soluciones en la nube que busca adquirir experiencia práctica más allá de lo aprendido en Conceptos básicos de Google Cloud, este curso es para ti. Obtendrás experiencia práctica a través de labs que profundizan en Cloud Storage y otros servicios de aplicaciones clave, como Monitoring y Cloud Functions. Desarrollarás habilidades valiosas que se pueden aplicar a cualquier iniciativa de Google Cloud.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Esta es la segunda de dos Quests de labs prácticos que provienen de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado por O'Reilly Media, Inc. En esta segunda Quest, que abarca desde el capítulo 9 hasta el final del libro, ampliará las habilidades practicadas en la primera Quest y ejecutará trabajos completos de aprendizaje automático con herramientas de última generación y conjuntos de datos del mundo real, todo mediante el uso de las herramientas y los servicios de Google Cloud Platform.
En este curso de nivel introductorio, se enseña a los desarrolladores de aplicaciones de qué manera el ecosistema de Google Cloud los puede ayudar a compilar aplicaciones nativas de la nube que sean seguras, inteligentes y escalables. Aprenderás a desarrollar y escalar aplicaciones sin necesidad de configurar una infraestructura, a ejecutar análisis de datos, a obtener estadísticas a partir de ellos y a desarrollar con APIs de AA previamente entrenadas para aprovechar el aprendizaje automático incluso si no eres experto en ese tipo de tecnología. También experimentarás la integración perfecta entre varios servicios de Google y APIs para crear apps inteligentes.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Usar potencia de procesamiento a gran escala para reconocer patrones y “leer” imágenes es una de las tecnologías fundamentales de la IA, que, por ejemplo, se usa en los vehículos autónomos y el reconocimiento facial. Google Cloud proporciona velocidad y precisión de primer nivel a través de sistemas que se pueden utilizar con solo llamar a las APIs. Con estas y muchas otras APIs, Google Cloud cuenta con herramientas para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica a procesamiento de imágenes en labs que te permitirán etiquetar imágenes, detectar rostros y puntos de referencia, y también extraer, analizar y traducir texto de las imágenes.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en el ámbito de la tecnología, y Google Cloud desempeñó un papel decisivo para impulsar su desarrollo. Con su gran cantidad de APIs, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica al procesamiento del lenguaje en labs que te permitirán extraer entidades de un texto, realizar análisis sintácticos y de opiniones, y usar la API de Speech-to-Text para la transcripción.