This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
Earn the intermediate skill badge by completing the Classify Images with TensorFlow on Google Cloud course where you will learn how to use TensorFlow and Vertex AI to create and train machine learning models. You will primarily interact with Vertex AI Workbench user-managed notebooks. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Bu kurs, MLOps ekiplerinin üretken yapay zeka modellerini dağıtırken ve yönetirken karşılaştığı zorlukların üstesinden gelmek için gereken bilgi ve araçları sağlamaktadır. Ayrıca yapay zeka ekiplerinin, MLOps süreçlerini kolaylaştırıp üretken yapay zeka projelerinde başarıya ulaşması için Vertex AI'ın nasıl yardımcı olduğunu öğrenmenizi amaçlamaktadır.
Bu kursta yapay zekanın yorumlanabilirliği ve şeffaflığı kavramlarıyla ilgili temel bilgiler sunulmaktadır. Ayrıca geliştiriciler ve mühendisler için yapay zeka sistemlerinde şeffaflığın önemi ele alınmaktadır. Kurs boyunca, veri ve yapay zeka modellerinde yorumlanabilirliğin ve şeffaflığın sağlanmasına yardımcı olacak pratik yöntemleri ve araçları tanıyacaksınız.
Orta düzeydeki Çoklu Format Destekli Gemini ve Çok Formatlı RAG ile Zengin Belgeleri İnceleme beceri rozetini tamamlayarak şu konulardaki becerilerinizi kanıtlayabilirsiniz: Çok formatlı istemler kullanarak metin ve görsel formatlarındaki verilerden bilgi elde etme, video açıklaması oluşturabilme ve Gemini ile çok formatlılıktan yararlanarak videonun kapsamındaki bilgilerden çok daha fazlasına ulaşabilme; metin ve görüntü içeren dokümanların meta verilerini oluşturma, gerekli tüm metin parçalarına ulaşma ve Gemini'ın Çok Formatlı Almayla Artırılmış Üretim (RAG) mimarisini kullanarak alıntıları yazdırma Beceri rozeti, Google Cloud ürün ve hizmetlerindeki uzmanlık düzeyiniz karşılığında Google Cloud tarafından verilen özel bir dijital rozettir. Bilgilerinizi, etkileşimli ve uygulamalı bir ortamda kullanma becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozeti kursunu ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
Bu kursta, sorumlu yapay zeka kavramı ve yapay zeka ilkeleri tanıtılmaktadır. Kurs, adalet ve önyargıyı pratik şekilde tanımlama teknikleri ile yapay zeka/makine öğrenimi uygulamalarında önyargının azaltılması konularını ele almaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynaklı araçları kullanarak sorumlu yapay zekayla ilgili en iyi uygulamaları benimsemenize yardımcı olacak pratik yöntemler ve araçları tanıyacaksınız.
Bu kursta yapay zeka destekli arama teknolojileri, araçları ve uygulamalarını keşfedeceksiniz. Vektör yerleştirmelerinin kullanıldığı semantik aramayı, semantik ve anahtar kelime yaklaşımlarının birleştirildiği karma aramayı ve yapay zeka temsilcisini temellendirerek yapay zeka halüsinasyonlarının en aza indirildiği veriyle artırılmış üretimi (RAG) öğrenin. Akıllı arama motorunuzu oluşturmak için Vertex AI Vector Search'ü uygulamalı olarak deneyin.
Bu kursta Vertex AI Studio tanıtılmaktadır. Bu araç, üretken yapay zeka modelleriyle etkileşime geçmek, kurumsal fikirlerin prototipini oluşturmak ve bunları gerçek hayatta uygulamak için kullanılır. Gerçek hayattan kullanım alanları, etkileşimli dersler ve uygulamalı laboratuvarlar aracılığıyla, ilk istemden son ürüne uzanan yaşam döngüsünü keşfedecek ve çoklu format destekli Gemini uygulamaları, istem tasarımı, istem mühendisliği ve model ayarlama konularında Vertex AI Studio'dan nasıl yararlanabileceğinizi öğreneceksiniz. Bu kursun amacı, Vertex AI Studio'yu kullanarak projelerinizde üretken yapay zekadan yararlanabilmenizi sağlamaktır.
Bu kurs, derin öğrenmeyi kullanarak görüntülere altyazı ekleme modeli oluşturmayı öğretmektedir. Kurs sırasında görüntülere altyazı ekleme modelinin farklı bileşenlerini (ör. kodlayıcı ve kod çözücü) ve modelinizi eğitip değerlendirmeyi öğreneceksiniz. Bu kursu tamamlayan öğrenciler, kendi görüntülere altyazı ekleme modellerini oluşturabilecek ve bu modelleri görüntülere altyazı oluşturmak için kullanabilecek.
Bu kurs, dönüştürücü mimarisini ve dönüştürücülerden çift yönlü kodlayıcı temsilleri (BERT - Encoder Representations from Transformers) modelini tanıtmaktadır. Kursta, öz dikkat mekanizması gibi dönüştürücü mimarisinin ana bileşenlerini ve BERT modelini oluşturmak için dönüştürücünün nasıl kullanıldığını öğreneceksiniz. Ayrıca sınıflandırma, soru yanıtlama ve doğal dil çıkarımı gibi BERT'in kullanılabileceği çeşitli görevler hakkında da bilgi sahibi olacaksınız. Kursun tahmini süresi 45 dakikadır.
Bu kursta, kodlayıcı-kod çözücü mimarisi özet olarak anlatılmaktadır. Bu mimari; makine çevirisi, metin özetleme ve soru yanıtlama gibi "sıradan sıraya" görevlerde yaygın olarak kullanılan, güçlü bir makine öğrenimi mimarisidir. Kursta, kodlayıcı-kod çözücü mimarisinin ana bileşenlerini ve bu modellerin nasıl eğitilip sunulacağını öğreneceksiniz. Laboratuvarın adım adım açıklamalı kılavuz bölümünde ise sıfırdan şiir üretmek için TensorFlow'da kodlayıcı-kod çözücü mimarisinin basit bir uygulamasını yazacaksınız.
Bu kursta nöral ağların, giriş sırasının belirli bölümlerine odaklanmasına olanak tanıyan güçlü bir teknik olan dikkat mekanizması tanıtılmaktadır. Kursta, dikkat mekanizmasının çalışma şeklini ve makine öğrenimi, metin özetleme ve soru yanıtlama gibi çeşitli makine öğrenimi görevlerinin performansını artırmak için nasıl kullanılabileceğini öğreneceksiniz.
Bu kursta, görüntü üretme alanında gelecek vadeden bir makine öğrenimi modelleri ailesi olan "difüzyon modelleri" tanıtılmaktadır. Difüzyon modelleri fizikten, özellikle de termodinamikten ilham alır. Geçtiğimiz birkaç yıl içinde, gerek araştırma gerekse endüstri alanında difüzyon modelleri popülerlik kazandı. Google Cloud'daki son teknoloji görüntü üretme model ve araçlarının çoğu, difüzyon modelleri ile desteklenmektedir. Bu kursta, difüzyon modellerinin ardındaki teori tanıtılmakta ve bu modellerin Vertex AI'da nasıl eğitilip dağıtılacağı açıklanmaktadır.
Kurumsal yapay zeka ve makine öğreniminin kullanımı artmaya devam ettikçe, bunu sorumlu bir şekilde oluşturmanın önemi de artıyor. Sorumlu yapay zeka hakkında konuşmanın, onu uygulamaya koymaktan çok daha kolay olabilmesi burada bir zorluk oluşturmaktadır. Kuruluşunuzda sorumlu yapay zekayı nasıl işlevsel hale getireceğinizi öğrenmekle ilgileniyorsanız, bu kurs tam size göre. Bu kurs, Google Cloud'un sorumlu yapay zeka yaklaşımını nasıl uyguladığını derinlemesine inceleyerek, kendi sorumlu yapay zeka stratejinizi oluşturmanız için size kapsamlı bir çerçeve sunuyor.
Vertex AI'da istem mühendisliği, görüntü analizi ve çok modlu üretken teknikler gibi becerileri göstermek için Vertex AI'da İstem Tasarımı beceri rozetini tamamlayın. Etkili istemlerin nasıl oluşturulacağını, üretken yapay zeka çıktılarına nasıl rehberlik edileceğini ve Gemini modellerinin gerçek dünyadaki pazarlama senaryolarına nasıl uygulanacağını keşfedin. Ein Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlığınızın tanınması amacıyla Google Cloud tarafından verilen özel bir dijital rozettir ve bilginizi etkileşimli, uygulamalı bir ortamda uygulama yeteneğinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti almak için bu beceri rozeti kursunu ve son değerlendirme yarışması laboratuvarını tamamlayın. Bu aktiviteyi tamamlayın ve bir rozet kazanın! Geliştirdiğiniz becerileri herkese göstererek bulut üstüne kariyerinizi geliştirin.
Bu kurs, sorumlu yapay zekanın ne olduğunu, neden önemli olduğunu ve Google'ın sorumlu yapay zekayı ürünlerinde nasıl uyguladığını açıklamayı amaçlayan giriş seviyesinde bir mikro öğrenme kursudur. Ayrıca Google'ın 7 yapay zeka ilkesini de tanıtır.
Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.
Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.