Questo corso tratta la creazione di modelli ML con TensorFlow e Keras, il miglioramento dell'accuratezza dei modelli ML e la scrittura di modelli ML per l'uso su larga scala.
Il corso inizia con una discussione sui dati: come migliorare la qualità dei dati ed eseguire analisi esplorative dei dati. Descriveremo Vertex AI AutoML e come creare, addestrare ed eseguire il deployment di un modello di ML senza scrivere una sola riga di codice. Comprenderai i vantaggi di Big Query ML. Discuteremo quindi di come ottimizzare un modello di machine learning (ML) e di come la generalizzazione e il campionamento possano aiutare a valutare la qualità dei modelli di ML per l'addestramento personalizzato.
Questo corso presenta le offerte di intelligenza artificiale (AI) e machine learning (ML) su Google Cloud per la creazione di progetti di AI predittiva e generativa. Esplora le tecnologie, i prodotti e gli strumenti disponibili durante tutto il ciclo di vita data-to-AI, includendo le basi, lo sviluppo e le soluzioni di AI. Ha lo scopo di aiutare data scientist, sviluppatori di AI e ML engineer a migliorare le proprie abilità e conoscenze attraverso attività di apprendimento coinvolgenti ed esercizi pratici.
Earn the intermediate skill badge by completing the Classify Images with TensorFlow on Google Cloud course where you will learn how to use TensorFlow and Vertex AI to create and train machine learning models. You will primarily interact with Vertex AI Workbench user-managed notebooks. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.
Questo corso introduce i concetti di interpretabilità e la trasparenza dell'AI. Parla dell'importanza della trasparenza dell'AI per sviluppatori ed engineer. Illustra metodi e strumenti pratici per aiutare a raggiungere interpretabilità e trasparenza sia nei dati che nei modelli di AI.
Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Questo corso introduce i concetti di AI responsabile e i principi dell'AI. Tratta le tecniche per identificare sostanzialmente l'equità e i bias e mitigare i bias nelle pratiche di AI/ML. Illustra metodi e strumenti pratici per implementare le best practice dell'AI responsabile utilizzando gli strumenti open source e i prodotti Google Cloud.
Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.
Questo corso illustra Generative AI Studio, un prodotto su Vertex AI che ti aiuta a prototipare e personalizzare i modelli di AI generativa in modo da poterne utilizzare le capacità nelle tue applicazioni. In questo corso imparerai cos'è Generative AI Studio, le sue funzionalità e opzioni e come utilizzarlo, esaminando le demo del prodotto. Alla fine, troverai un laboratorio pratico per mettere in pratica ciò che hai imparato e un quiz per testare le tue conoscenze.
Questo corso ti insegna come creare un modello per le didascalie delle immagini utilizzando il deep learning. Scoprirai i diversi componenti di un modello per le didascalie delle immagini, come l'encoder e il decoder, e imparerai ad addestrare e valutare il tuo modello. Alla fine di questo corso, sarai in grado di creare modelli personali per le didascalie delle immagini e utilizzarli per generare didascalie per le immagini.
Questo corso ti introduce all'architettura Transformer e al modello BERT (Bidirectional Encoder Representations from Transformers). Scopri i componenti principali dell'architettura Transformer, come il meccanismo di auto-attenzione, e come viene utilizzata per creare il modello BERT. Imparerai anche le diverse attività per le quali può essere utilizzato il modello BERT, come la classificazione del testo, la risposta alle domande e l'inferenza del linguaggio naturale. Si stima che il completamento di questo corso richieda circa 45 minuti.
Questo corso ti offre un riepilogo dell'architettura encoder-decoder, che è un'architettura di machine learning potente e diffusa per attività da sequenza a sequenza come traduzione automatica, riassunto del testo e risposta alle domande. Apprenderai i componenti principali dell'architettura encoder-decoder e come addestrare e fornire questi modelli. Nella procedura dettagliata del lab corrispondente, implementerai in TensorFlow dall'inizio un semplice codice dell'architettura encoder-decoder per la generazione di poesie da zero.
Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.
Questo corso introduce i modelli di diffusione, una famiglia di modelli di machine learning che recentemente si sono dimostrati promettenti nello spazio di generazione delle immagini. I modelli di diffusione traggono ispirazione dalla fisica, in particolare dalla termodinamica. Negli ultimi anni, i modelli di diffusione sono diventati popolari sia nella ricerca che nella produzione. I modelli di diffusione sono alla base di molti modelli e strumenti di generazione di immagini all'avanguardia su Google Cloud. Questo corso ti introduce alla teoria alla base dei modelli di diffusione e a come addestrarli ed eseguirne il deployment su Vertex AI.
Dal momento che l'uso dell'intelligenza artificiale e del machine learning nelle aziende continua a crescere, cresce anche l'importanza di realizzarli in modo responsabile. Molti sono scoraggiati dal fatto che parlare di IA responsabile può essere più facile che metterla in pratica. Se vuoi imparare come operativizzare l'IA responsabile nella tua organizzazione, questo corso fa per te. In questo corso scoprirai come Google Cloud ci riesce attualmente, oltre alle best practice e alle lezioni apprese, per fungere da framework per costruire il tuo approccio all'IA responsabile.
Complete the introductory Prompt Design in Vertex AI skill badge to demonstrate skills in the following: prompt engineering, image analysis, and multimodal generative techniques, within Vertex AI. Discover how to craft effective prompts, guide generative AI output, and apply Gemini models to real-world marketing scenarios. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'IA responsabile, perché è importante e in che modo Google implementa l'IA responsabile nei propri prodotti. Introduce anche i 7 principi dell'IA di Google.
Questo è un corso di microlearning di livello introduttivo che esplora cosa sono i modelli linguistici di grandi dimensioni (LLM), i casi d'uso in cui possono essere utilizzati e come è possibile utilizzare l'ottimizzazione dei prompt per migliorare le prestazioni dei modelli LLM. Descrive inoltre gli strumenti Google per aiutarti a sviluppare le tue app Gen AI.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.