Join Sign in

Apply your skills in Google Cloud console

Anagha Menon

Member since 2020

Gold League

12510 points
Edit images with Imagen Earned Aug 8, 2025 EDT
Build search and recommendations applications with AI Applications Earned Aug 8, 2025 EDT
Extend Gemini with controlled generation and Tool use Earned Aug 8, 2025 EDT
Build basic Conversational Agents with Playbooks and Flows Earned Aug 7, 2025 EDT
Virtual FAQ with data store agents Earned Aug 6, 2025 EDT
Incorporate Generative Features into Conversational Agent flows Earned Aug 6, 2025 EDT
Stateful Flows Earned Jul 22, 2025 EDT
Generative Playbooks Earned Jul 21, 2025 EDT
Introduction to CES and Conversational Agents Earned Jul 17, 2025 EDT
Build and Deploy a Generative AI solution using a RAG framework Earned Dec 24, 2024 EST
Transformer Models and BERT Model Earned Oct 11, 2023 EDT
Encoder-Decoder Architecture Earned Oct 11, 2023 EDT
Attention Mechanism Earned Oct 11, 2023 EDT
Introduction to Image Generation Earned Oct 11, 2023 EDT
Generative AI Fundamentals Earned Oct 11, 2023 EDT
Introduction to Responsible AI Earned Oct 11, 2023 EDT
Introduction to Large Language Models Earned Oct 11, 2023 EDT
Introduction to Generative AI Earned Aug 21, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Apr 15, 2022 EDT
Recommendation Systems on Google Cloud Earned Feb 8, 2022 EST
Natural Language Processing on Google Cloud Earned Feb 12, 2021 EST
Computer Vision Fundamentals with Google Cloud Earned Feb 8, 2021 EST
Feature Engineering Earned Jan 28, 2021 EST
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jan 19, 2021 EST
Launching into Machine Learning Earned Jan 18, 2021 EST
Production Machine Learning Systems Earned Jan 17, 2021 EST
Google Cloud Big Data and Machine Learning Fundamentals Earned Jan 14, 2021 EST

Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"

Learn more

Complete the Build basic Conversational Agents with Playbooks and Flows skill badge to demonstrate your proficiency in building virtual agents using traditional NLU and generative-based features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.

Learn more

Explore the Generative AI features for Conversational Agents and how to incorporate them into stateful Flows. Discover the possibilities with Generators, Generative Fallback, and Data Stores, as well as best practices and security settings for using these features.

Learn more

Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.

Learn more

Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.

Learn more

This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.

Learn more

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

Learn more

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Learn more

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Learn more

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question answering. This course is estimated to take approximately 45 minutes to complete.

Learn more

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

Learn more

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Learn more

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Learn more

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Learn more

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more