Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Jonathan Arenas Labaila

Date d'abonnement : 2020

Travailler avec des modèles Gemini dans BigQuery Earned sept. 18, 2025 EDT
Booster la productivité avec Gemini dans BigQuery Earned sept. 17, 2025 EDT
Concevoir des systèmes d'analyse de flux résilients sur Google Cloud Earned sept. 16, 2025 EDT
Créer des pipelines de données en batch sur Google Cloud Earned sept. 12, 2025 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned sept. 3, 2025 EDT
Introduction à l'ingénierie des données sur Google Cloud Earned sept. 2, 2025 EDT
Traitement des données sans serveur avec Dataflow : principes de base Earned août 31, 2025 EDT
Se préparer à devenir Professional Data Engineer Earned août 26, 2025 EDT
Préparer des données pour les API de ML sur Google Cloud Earned mai 25, 2024 EDT
Analyse de flux dans BigQuery Earned mai 25, 2024 EDT
Dégager des insights des données BigQuery Earned mai 25, 2024 EDT
Créer un entrepôt de données avec BigQuery Earned mai 24, 2024 EDT
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned avr. 5, 2024 EDT

Ce cours montre comment utiliser des modèles d'IA/de ML pour des tâches d'IA générative dans BigQuery. À travers un cas d'utilisation pratique faisant intervenir la gestion de la relation client, vous étudierez le workflow de résolution d'un problème métier à l'aide de modèles Gemini. Pour faciliter la compréhension, le cours fournit également des instructions détaillées tout au long du codage des solutions à l'aide de requêtes SQL et de Notebooks Python.

En savoir plus

Ce cours présente Gemini dans BigQuery, une suite de fonctionnalités basées sur l'IA conçue pour faciliter le workflow "des données à l'IA". Ces fonctionnalités incluent l'exploration et la préparation des données, la génération et le dépannage de code, ainsi que la découverte et la visualisation du workflow. Au moyen d'explications conceptuelles, d'un cas d'utilisation concret et d'ateliers pratiques, le cours explique aux professionnels des données comment booster leur productivité et accélérer le pipeline de développement.

En savoir plus

Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus

Dans ce cours, vous allez explorer l'ingénierie de données sur Google Cloud, les rôles et responsabilités des ingénieurs de données, et la façon dont ces éléments se retrouvent dans les offres Google Cloud. Vous apprendrez également à relever les défis liés à l'ingénierie de données.

En savoir plus

Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.

En savoir plus

Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Obtenez un badge de compétence en effectuant la quête Analyse de flux dans BigQuery, où vous utiliserez Pub/Sub, Dataflow et BigQuery ensemble pour diffuser des données en flux continu pour l'analyse. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez cette quête et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.

En savoir plus