Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

Jonathan Arenas Labaila

Mitglied seit 2020

Gemini-Modelle in BigQuery nutzen Earned Sep 18, 2025 EDT
Mit Gemini in BigQuery produktiver arbeiten Earned Sep 17, 2025 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned Sep 16, 2025 EDT
Building Batch Data Pipelines on Google Cloud Earned Sep 12, 2025 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned Sep 3, 2025 EDT
Einführung in Data Engineering in Google Cloud Earned Sep 2, 2025 EDT
Serverless Data Processing with Dataflow: Foundations Earned Aug 31, 2025 EDT
Preparing for your Professional Data Engineer Journey Earned Aug 26, 2025 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Mai 25, 2024 EDT
Streamanalyse in BigQuery Earned Mai 25, 2024 EDT
Informationen aus BigQuery-Daten ableiten Earned Mai 25, 2024 EDT
Data Warehouse mit BigQuery erstellen Earned Mai 24, 2024 EDT
Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten Earned Apr 5, 2024 EDT

In diesem Kurs wird gezeigt, wie Sie KI-/ML-Modelle für Aufgaben basierend auf generativer KI in BigQuery verwenden. Anhand eines praktischen Anwendungsfalls zum Customer-Relationship-Management lernen Sie den Workflow zur Lösung eines Geschäftsproblems mit Gemini-Modellen kennen. Zur besseren Nachvollziehbarkeit bietet der Kurs auch eine Schritt-für-Schritt-Anleitung für das Programmieren von Lösungen mithilfe von SQL-Abfragen und Python-Notebooks.

Weitere Informationen

Dieser Kurs behandelt Gemini in BigQuery, eine Suite KI-gesteuerter Funktionen zur Aufbereitung von Daten für die Verwendung in künstlicher Intelligenz. Zu diesen Funktionen gehören explorative Datenanalyse und ‑aufbereitung, Codegenerierung und Fehlerbehebung sowie Workflow-Erkennung und ‑Visualisierung. Durch konzeptionelle Erläuterungen, einen praxisnahen Anwendungsfall und praktische Übungen können Datenexperten mit diesem Kurs ihre Produktivität steigern und die Entwicklungspipeline beschleunigen.

Weitere Informationen

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Weitere Informationen

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Weitere Informationen

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Weitere Informationen

In diesem Kurs lernen Sie Data Engineering on Google Cloud sowie die Rollen und Verantwortlichkeiten von Data Engineers kennen und sehen, wie diese mit den Angeboten von Google Cloud zusammenhängen. Außerdem erfahren Sie, wie Sie Herausforderungen im Bereich Data Engineering meistern können.

Weitere Informationen

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Weitere Informationen

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Erhalten Sie ein Skill-Logo, indem Sie die Aufgabenreihe Streamanalyse in BigQuery abschließen. In dieser Reihe verwenden Sie Pub/Sub, Dataflow und BigQuery zusammen, um Daten für Analysen zu streamen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Informationen aus BigQuery-Daten ableiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Schreiben von SQL-Abfragen, Abfragen öffentlicher Tabellen, Laden von Beispieldaten in BigQuery, Beheben häufig auftretender Syntaxfehler mithilfe der Abfragevalidierung in BigQuery und Erstellen von Berichten in Looker Studio durch Herstellen einer Verbindung zu BigQuery-Daten. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen