参加 ログイン

Google Cloud コンソールでスキルを試す

Kim Oleg

メンバー加入日: 2023

ゴールドリーグ

45270 ポイント
Gemini によるマルチモダリティとマルチモーダル RAG を使用したリッチ ドキュメントの検査 Earned 11月 17, 2024 EST
ベクトル検索とエンベディング Earned 11月 16, 2024 EST
Vertex AI での ML ソリューションの構築とデプロイ Earned 11月 9, 2024 EST
画像生成の概要 Earned 11月 9, 2024 EST
Introduction to Security in the World of AI Earned 11月 6, 2024 EST
開発者向けの責任ある AI: 解釈可能性と透明性 Earned 11月 4, 2024 EST
発者向けの責任ある AI: 公平性とバイアス Earned 11月 3, 2024 EST
Vertex AI を使用した ML オペレーション(MLOps): モデルの評価 Earned 11月 2, 2024 EDT
生成 AI のための ML オペレーション(MLOps) Earned 11月 1, 2024 EDT
Vertex AI と Flutter による 生成 AI エージェントの構築 Earned 10月 24, 2024 EDT
Google Cloud における生成 AI を使用したウェブサイトのモダナイゼーション Earned 10月 20, 2024 EDT
Google Cloud での生成 AI アプリの作成 Earned 10月 18, 2024 EDT
Associate Cloud Engineer の取得に向けた準備 Earned 9月 14, 2024 EDT
Gemini in Google ドライブ Earned 9月 2, 2024 EDT
Google Cloud の ML API 用にデータを準備 Earned 8月 25, 2024 EDT
安全な Google Cloud ネットワークの構築 Earned 8月 22, 2024 EDT
Gemini in Google Meet Earned 8月 22, 2024 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 8月 21, 2024 EDT
Gemini in Google スプレッドシート Earned 8月 20, 2024 EDT
Gemini in Google スライド Earned 8月 19, 2024 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned 8月 19, 2024 EDT
[DEPRECATED] - Google Cloud Computing Foundations: Networking and Security in Google Cloud 日本語版 Earned 8月 17, 2024 EDT
Firebase を使用したサーバーレス アプリの開発 Earned 8月 9, 2024 EDT
Gemini in Google ドキュメント Earned 8月 8, 2024 EDT
Gemini と Streamlit を使用した生成 AI アプリの開発 Earned 8月 6, 2024 EDT
Gemini in Gmail Earned 8月 6, 2024 EDT
Gemini for Google Workspace の概要 Earned 8月 5, 2024 EDT
エンドツーエンドの SDLC のための Gemini Earned 8月 4, 2024 EDT
DevOps エンジニア向けの Gemini Earned 8月 4, 2024 EDT
セキュリティ エンジニア向けの Gemini Earned 8月 4, 2024 EDT
ネットワーク エンジニア向けの Gemini Earned 8月 3, 2024 EDT
データ サイエンティストとアナリスト向けの Gemini Earned 8月 3, 2024 EDT
クラウド アーキテクト向けの Gemini Earned 8月 2, 2024 EDT
アプリケーション開発者向けの Gemini Earned 7月 29, 2024 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 7月 29, 2024 EDT
Vertex AI におけるプロンプト設計 Earned 7月 29, 2024 EDT
Generative AI Fundamentals - 日本語版 Earned 7月 27, 2024 EDT
責任ある AI の概要 Earned 7月 27, 2024 EDT
大規模言語モデルの概要 Earned 7月 27, 2024 EDT
生成 AI の概要 Earned 11月 16, 2023 EST
Google Cloud の基礎: コア インフラストラクチャ Earned 10月 31, 2023 EDT
[DEPRECATED] Google Cloud Computing Foundations: Infrastructure in Google Cloud 日本語板 Earned 10月 19, 2023 EDT
Compute Engine でのロード バランシングの実装 Earned 10月 17, 2023 EDT
[DEPRECATED]-Google Cloud Computing Foundations: Cloud Computing Fundamentals - 日本語版 Earned 10月 13, 2023 EDT

Gemini によるマルチモダリティとマルチモーダル RAG を使用したリッチ ドキュメントの検査 スキルバッジを獲得できる中級コースを修了すると、次のスキルを実証できます。 Gemini を使用したマルチモダリティにより、マルチモーダル プロンプトを使用してテキストと視覚データから情報を抽出し、動画の説明を生成して、 動画の範囲を超えた追加情報を取得する。Gemini を使用したマルチモーダル検索拡張生成(RAG)により、テキストと画像を含むドキュメントのメタデータを作成し、関連するすべてのテキスト チャンクの取得して、 引用を出力する。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、ネットワークで共有しましょう。

詳細

このコースでは、AI を活用した検索テクノロジー、ツール、アプリケーションについて学びます。ベクトル エンベディングを利用するセマンティック検索、セマンティック アプローチとキーワード アプローチを組み合わせたハイブリッド検索、グラウンディング対応 AI エージェントとして AI のハルシネーションを最小限に抑える検索拡張生成(RAG)をご紹介します。Vertex AI Vector Search を実践的な経験を積んで、インテリジェントな検索エンジンを構築しましょう。

詳細

Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.

詳細

このコースでは、AI の解釈可能性と透明性のコンセプトを紹介します。デベロッパーとエンジニアにとって AI の透明性が重要であることについて説明します。データと AI モデルの両方で解釈可能性と透明性を達成できる実践的な方法とツールを検証します。

詳細

このコースでは、責任ある AI および AI に関する原則のコンセプトを紹介します。AI / ML の実践における公平性とバイアスを特定し、バイアスを軽減するための実践的な手法を取り扱います。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して責任ある AI のベスト プラクティスを実装するための実践的な方法とツールを検証します。

詳細

このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースでは、Google のポータブル UI ツールキットである Flutter を使用してアプリを開発し、そのアプリを Google の生成 AI モデル ファミリーである Gemini と統合する方法について学びます。また、AI エージェントとアプリケーションを構築、管理するための Google のプラットフォームである Vertex AI Agent Builder も使用します。

詳細

生成 AI を使用してユーザーがより快適に検索できるようにすることで、ウェブサイトのナビゲーション エクスペリエンスを向上する。このコースでは、ウェブサイトに含まれるコンテンツをユーザーが見つけやすくするために、Vertex AI Search を使用して生成検索機能を提供する方法を学習します。また、ウェブサイト編集者として、生成 AI による提案を利用して短時間で効率的にコンテンツの翻訳や改善を行う方法も学びます。

詳細

生成 AI アプリケーションは、大規模言語モデル(LLM)の発明以前にはほぼ不可能であった、新しいユーザー エクスペリエンスを生み出すことができます。アプリケーション デベロッパーが Google Cloud 上で生成 AI を活用し、魅力的で強力なアプリを構築するにはどうすればよいでしょうか? このコースでは、生成 AI アプリケーションについて学びます。また、プロンプト設計と検索拡張生成(RAG)を使用して、LLM を活用した強力なアプリケーションを構築する方法についても学びます。さらに、生成 AI アプリケーションで使用できるプロダクション レディなアーキテクチャについて学び、LLM と RAG ベースのチャット アプリケーションを構築します。

詳細

このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。動画レッスン、ハンズオン アクティビティ、実用的な例を使用して、Gemini in Google ドライブの機能について詳しく説明します。 このコースを修了すると、自信を持って Gemini in Google ドライブを活用し、ワークフローを改善するための知識やスキルを身に付けることができます。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。このコースでは、Google Meet での Gemini の機能について掘り下げます。動画レッスン、ハンズオン アクティビティ、実用的な例を通じて Google Meet の Gemini 機能を総合的に理解し、Gemini を使用した背景画像の生成、ビデオ通話の映りの改善、字幕翻訳の方法を学びます。このコースを修了すると、Google Meet で Gemini を自信を持って活用し、ビデオ会議の効果を最大限に高めるための知識とスキルを身に付けられます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スプレッドシートの生産性と効率を向上させる方法について学びます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スライドの生産性と効率を向上させる方法について学びます。

詳細

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 3 番目のコースでは、安全なネットワークを構築する方法、 およびクラウドの自動化と管理ツールについて説明します。

詳細

「Firebase を使用したサーバーレス アプリの開発」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。動画レッスン、ハンズオン アクティビティ、実用的な例を使用して、Gemini in Google ドキュメントの機能について詳しく説明します。Gemini を使用して、プロンプトに基づいて文書のコンテンツを生成する方法を学びます。また、Gemini を使用して、記述済みのテキストを編集し、全体的な生産性の向上を支援することも検討します。このコースを修了すると、自信を持って Gemini in Google ドキュメントを活用し、文章作成能力を向上させるための知識やスキルを身に付けることができます。

詳細

「Gemini と Streamlit を使用した生成 AI アプリの開発」の中級スキルバッジを獲得すると、 テキストの生成、Python SDK と Gemini API を使用した関数呼び出し、Cloud Run を使用した Streamlit アプリケーションのデプロイといったスキルを実証できます。 ここでは、Gemini にテキスト生成のプロンプトを与えるさまざまな方法を確認し、Cloud Shell を使用して Streamlit アプリケーションのテストとイテレーションを行い、Cloud Run にデプロイされる Docker コンテナとしてパッケージ化します。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Gmail の生産性と効率を向上させる方法について学びます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。この学習プログラムでは、Gemini の主な機能と、それらの機能を使用して Google Workspace の生産性と効率を向上させる方法について学びます。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、Google のプロダクトとサービスを使用してアプリケーションを開発、テスト、デプロイ、管理するうえでどのように役立つかを学習します。Gemini を利用して、ウェブ アプリケーションを開発および構築する方法、アプリケーションのエラーを修正する方法、テストを作成する方法、データをクエリする方法を学びます。ハンズオンラボでは、Gemini を使用することでソフトウェア開発ライフサイクル(SDLC)がどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、エンジニアによるインフラストラクチャの管理にどのように役立つかについて学習します。アプリケーション ログを検索して理解するように Gemini に指示する方法、GKE クラスタを作成する方法、ビルド環境の作成方法を調査する方法を学びます。ハンズオンラボでは、Gemini を使用することで DevOps ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、クラウド環境とリソースを安全に保つうえでどのように役立つかを学習します。サンプル ワークロードを Google Cloud の環境にデプロイする方法、Gemini を使用してセキュリティ構成ミスを特定、修正する方法を学びます。ハンズオンラボでは、Gemini を使用することでクラウドのセキュリティ ポスチャーがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、ネットワーク エンジニアによる VPC ネットワークの作成、更新、管理にどのように役立つかについて学びます。検索エンジンで調べられる内容を超えた、自身のネットワーキング タスクに固有のガイダンスの提供を Gemini に指示する方法を学習します。ハンズオンラボでは、Gemini を使用することで Google Cloud VPC ネットワークの作業がどのように簡単になるかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、顧客データの分析や商品売上の予測にどのように役立つかについて学びます。また、BigQuery で顧客データを使用して、新規顧客を特定、分類、発見する方法も学習します。ハンズオンラボでは、Gemini でデータ分析と ML のワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、管理者によるインフラストラクチャのプロビジョニングにどのように役立つかについて学習します。Gemini にプロンプトを入力して、インフラストラクチャの説明、GKE クラスタのデプロイ、既存のインフラストラクチャの更新についての情報を取得する方法を学びます。ハンズオン ラボでは、Gemini を使用することで GKE のデプロイ ワークフローがどのように向上するかを体験します。 Duet AI は、Google の次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーター、Gemini が、デベロッパーのアプリケーション構築にどのように役立つかについて学びます。コードの説明、Google Cloud サービスの提案、アプリケーションのコード生成を Gemini に指示する方法について学びます。ハンズオンラボを使用して、Gemini でアプリケーション開発ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 2 番目のコースでは、ストレージ モデルの実装、さまざまなアプリケーション マネージド サービス オプション、GoogleCloudでのセキュリティ管理について説明します。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの知識または経験がほとんどあるいはまったくない受講者に、 クラウドの基礎、ビッグデータ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのように役立つかについて詳しく説明します。 最初にクラウド コンピューティングの概要を確認してから、クラウド·コンピューティング·インフラストラクチャと、ビッグデータおよび機械学習の 2 つの分野を詳しく見ていきます。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、機械学習に関連するコンセプトを明確に説明したり、 いくつかの実践的スキルを実証したりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。

詳細