加入 登录

在 Google Cloud 控制台中运用您的技能

Kaige Gao

成为会员时间:2025

钻石联赛

9951 积分
Google Cloud 的 AI 和機器學習服務簡介 Earned Oct 4, 2025 EDT
Select a Google Cloud Database for Your Applications Earned Sep 29, 2025 EDT
Google Cloud 基礎知識:核心基礎架構 Earned Sep 28, 2025 EDT
在 Google Cloud 為機器學習 API 準備資料 Earned Sep 25, 2025 EDT
建構安全的 Google Cloud 網路 Earned Sep 25, 2025 EDT
負責任的 AI 技術:透過 Google Cloud 採用 AI 開發原則 Earned Sep 25, 2025 EDT
負責任的 AI 技術簡介 Earned Sep 25, 2025 EDT
大型語言模型簡介 Earned Sep 25, 2025 EDT
生成式 AI 簡介 Earned Sep 25, 2025 EDT
生成式 AI 代理:實現組織轉型 Earned Sep 24, 2025 EDT
在 Google Cloud 設定應用程式開發環境 Earned Sep 21, 2025 EDT
生成式 AI 應用程式:徹底改變工作方式 Earned Sep 20, 2025 EDT
生成式 AI:掌握幕後技術與環境 Earned Sep 17, 2025 EDT
在 Compute Engine 實作負載平衡功能 Earned Sep 11, 2025 EDT
Google Cloud Computing Foundations: Networking & Security in Google Cloud Earned Sep 11, 2025 EDT
生成式 AI:瞭解基礎概念 Earned Sep 10, 2025 EDT
生成式 AI:不只是聊天機器人 Earned Sep 8, 2025 EDT
在 Vertex AI 設計提示 Earned Sep 7, 2025 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned Sep 2, 2025 EDT
Google Cloud Computing Foundations: Infrastructure in Google Cloud Earned Aug 30, 2025 EDT
Google Cloud Computing Foundations: Cloud Computing Fundamentals Earned Aug 28, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned Aug 21, 2025 EDT

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

了解详情

「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。

了解详情

完成「建構安全的 Google Cloud 網路」課程,即可獲得技能徽章。本課程將說明多項網路相關 資源,協助您在 Google Cloud 建構、調度資源和保護應用程式。

了解详情

隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。

了解详情

這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。

了解详情

這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

了解详情

這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

了解详情

「生成式 AI 代理:實現組織轉型」是 Generative AI Leader 學習路徑的第五門課,也是最後一門。本課程將探討組織如何運用自訂生成式 AI 代理,解決特定的業務難題。您將動手練習建構基本的生成式 AI 代理,同時熟悉這類代理的各種元件,例如模型、推論迴圈和工具。

了解详情

只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。

了解详情

「生成式 AI 應用程式:徹底改變工作方式」是 Generative AI Leader 學習路徑的第四門課程。本課程將介紹 Google 的生成式 AI 應用程式,例如 Gemini for Workspace 和NotebookLM,也會引導您瞭解各種概念,像是建立基準、檢索增強生成、建構有效的提示詞,以及打造自動化工作流程等。

了解详情

「生成式 AI:掌握幕後技術與環境」是 Generative AI Leader 學習路徑的第三門課程。生成式 AI 正在改變我們的工作方式,以及我們如何與周遭的世界互動。身為領導者,您要如何駕馭 AI 強大的功能,創造實際業務成果?在本課程中,您將認識建構生成式 AI 解決方案時的各個層面、Google Cloud 產品,以及選擇解決方案時應考量的因素。

了解详情

完成 在 Compute Engine 實作負載平衡功能 技能徽章入門課程,即可證明您具備下列技能: 編寫 gcloud 指令和使用 Cloud Shell、在 Compute Engine 建立及部署虛擬機器, 以及設定網路和 HTTP 負載平衡器。 「技能徽章」是 Google Cloud 核發的 獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個課程及挑戰研究室 最終評量,即可取得技能徽章並與親友分享。

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.

了解详情

「生成式 AI: 瞭解基礎概念」是 Generative AI Leader 學習路徑的第二門課程。在本課程中,您將瞭解 AI、機器學習和生成式 AI 的差異,以及各種資料類型如何協助生成式 AI 解決業務難題,進而掌握生成式 AI 的基礎概念。您還能深入瞭解 Google Cloud 應對基礎 模型限制的策略,以及開發、部署安全且負責任的 AI 技術時面臨的主要挑戰。

了解详情

「生成式 AI:不只是聊天機器人」是 Generative AI Leader 學習路徑的第一門課程,沒有任何修課條件。本課程將帶您超越基本知識,進一步瞭解聊天機器人,探索如何在組織中充分發揮生成式 AI 的潛力。您將瞭解基礎模型和提示工程等概念,掌握善用生成式AI 的關鍵。本課程也會帶您瞭解擬定生成式 AI 策略時的多種重要考量,協助您為組織擬定出成功的策略。

了解详情

完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情