加入 登录

在 Google Cloud 控制台中运用您的技能

Kaige Gao

成为会员时间:2025

钻石联赛

9951 积分
Google Cloud 上的 AI 和机器学习简介 Earned Oct 4, 2025 EDT
Select a Google Cloud Database for Your Applications Earned Sep 29, 2025 EDT
Google Cloud 基础知识:核心基础设施 Earned Sep 28, 2025 EDT
在 Google Cloud 上为机器学习 API 准备数据 Earned Sep 25, 2025 EDT
构建安全的 Google Cloud 网络 Earned Sep 25, 2025 EDT
Responsible AI: 和 Google Cloud 一起践行 AI 原则 Earned Sep 25, 2025 EDT
负责任的 AI 简介 Earned Sep 25, 2025 EDT
大型语言模型简介 Earned Sep 25, 2025 EDT
生成式 AI 简介 Earned Sep 25, 2025 EDT
生成式 AI 智能体:助力组织转型 Earned Sep 24, 2025 EDT
在 Google Cloud 上设置应用开发环境 Earned Sep 21, 2025 EDT
生成式 AI 应用:改变工作方式 Earned Sep 20, 2025 EDT
生成式 AI: 全面了解生成式 AI Earned Sep 17, 2025 EDT
在 Compute Engine 上实现负载均衡 Earned Sep 11, 2025 EDT
Google Cloud Computing Foundations: Networking & Security in Google Cloud Earned Sep 11, 2025 EDT
生成式 AI:剖析基本概念 Earned Sep 10, 2025 EDT
生成式 AI:不只是聊天机器人 Earned Sep 8, 2025 EDT
在 Vertex AI 中设计提示 Earned Sep 7, 2025 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned Sep 2, 2025 EDT
Google Cloud Computing Foundations: Infrastructure in Google Cloud Earned Aug 30, 2025 EDT
Google Cloud Computing Foundations: Cloud Computing Fundamentals Earned Aug 28, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned Aug 21, 2025 EDT

本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。

了解详情

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

了解详情

“Google Cloud 基础知识:核心基础设施”介绍在使用 Google Cloud 时会遇到的重要概念和术语。本课程通过视频和实操实验来介绍并比较 Google Cloud 的多种计算和存储服务,并提供重要的资源和政策管理工具。

了解详情

完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章,在您的人际圈中炫出自己的技能。

了解详情

完成构建安全的 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将了解与网络有关的众多 资源,以便在 Google Cloud 上构建、扩缩和保护自己的应用。

了解详情

随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情

“生成式 AI 智能体:助力组织转型”是“Generative AI Leader”学习路线中的第五门课程,也是最后一门课程。本课程探讨了组织如何使用自定义生成式 AI 智能体,帮助应对特定的业务挑战。您将亲自动手构建一个基本的生成式 AI 智能体,并探索这些智能体的组成部分,例如模型、推理循环以及各种工具。

了解详情

完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。

了解详情

“生成式 AI 应用:改变工作方式”是 Generative AI Leader 学习路线的第四门课程。本课程介绍 Google 的生成式 AI 应用,例如 Gemini for Workspace 和 NotebookLM。它将引导您逐一了解接地、检索增强生成、构建有效提示和构建自动化工作流等概念。

了解详情

“生成式 AI: 全面了解生成式 AI”是 Generative AI Leader 学习路线中的第三门课程。生成式 AI 正在改变我们的工作方式,以及我们与周围世界的互动方式。作为领导者,应该如何利用生成式 AI 来推动实现实际的业务成果?在本课程中,您将探索构建生成式 AI 解决方案的不同层级、Google Cloud 的产品,以及选择解决方案时需要考虑的因素。

了解详情

完成入门级在 Compute Engine 上实现负载均衡技能徽章课程,展示自己在以下方面的技能: 编写 gcloud 命令和使用 Cloud Shell,在 Compute Engine 中创建和部署虚拟机, 以及配置网络和 HTTP 负载均衡器。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中运用所学知识的 能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得技能徽章,并在您的圈子中秀一秀。

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.

了解详情

“生成式 AI: 剖析基本概念”是 Generative AI Leader 学习路线中的第二门课程。在本课程中,您将了解生成式 AI 的基本概念。您要探索 AI、机器学习和生成式 AI 之间的区别,了解各种数据类型如何赋能生成式 AI,从而应对各种业务挑战。您还将深入了解 Google Cloud 应对基础模型局限性的策略,以及负责任和安全的 AI 开发与部署面临着哪些关键挑战。

了解详情

“生成式 AI:不只是聊天机器人”是 Generative AI Leader 学习路线中的第一门课程。学习本课程没有知识门槛。本课程旨在帮助您超越对聊天机器人的基本认知,探索生成式 AI技术为您的组织带来的真正潜力。您将探索基础模型和提示工程等概念,这些知识对利用生成式 AI 的强大功能至关重要。本课程还将说明,为组织制定成功的生成式 AI 策略时,需要考虑哪些重要因素。

了解详情

完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。 技能徽章 是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,获得技能徽章, 并在您的社交圈中秀一秀自己的水平。

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情