yu zheng lim
Menjadi anggota sejak 2020
Silver League
4300 poin
Menjadi anggota sejak 2020
Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Selesaikan badge keahlian Membangun Infrastruktur dengan Terraform di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: Prinsip Infrastruktur sebagai Kode (IaC) menggunakan Terraform, penyediaan dan pengelolaan resource Google Cloud dengan konfigurasi Terraform, pengelolaan status yang efektif (lokal dan jarak jauh), serta modularisasi kode Terraform agar dapat digunakan kembali dan diatur. Badge keahlian akan memvalidasi pengetahuan praktis Anda terkait produk tertentu melalui lab interaktif dan penilaian tantangan. Dapatkan badge dengan menyelesaikan kursus atau langsung ikuti Challenge Lab untuk mendapatkan badge Anda hari ini. Badge membuktikan kemahiran Anda, meningkatkan profil profesional Anda, dan pada akhirnya membantu meningkatkan peluang karier Anda. Kunjungi profil Anda untuk memantau badge yang telah Anda peroleh.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk Dasbor dan Laporan Looker untuk menunjukkan keterampilan dalam hal berikut: memfilter, mengurutkan, dan melakukan pivot pada data; menggabungkan hasil dari sejumlah Eksplorasi Looker; serta menggunakan fungsi dan operator untuk membangun dasbor dan laporan Looker untuk analisis dan visualisasi data. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.
This quest is designed to teach you how to apply AWS Identity and Access Management, in concert with several other AWS Services, to address real-world application and service security management scenarios.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Jika Anda adalah developer cloud pemula yang mencari praktik langsung di luar Google Cloud Essentials, kursus ini cocok untuk Anda. Anda akan mendapatkan pengalaman praktis melalui lab yang mendalami Cloud Storage dan layanan aplikasi utama lainnya seperti Monitoring dan Cloud Functions. Anda akan mengembangkan keahlian berharga yang dapat diterapkan untuk inisiatif Google Cloud apa pun.
Google Cloud’s four step structured Cloud Migration Path Methodology provides a defined and repeatable path for users to follow when migrating and modernizing Virtual Machines. In this quest, you will get hands-on practice with Google’s current solution set for VM assessment, planning, migration, and modernization. You will start by analyzing your lab environment and building assessment reports with CloudPhysics and StratoZone, then build a landing zone within Google Cloud leveraging Terraform’s infrastructure-as-code templates, next you will manually transform a two-tier application into a cloud-native workload running on Kubernetes, and finally, transform a VM workload into Kubernetes with Migrate for Anthos and migrate a VM between cloud environments.