参加 ログイン

Google Cloud コンソールでスキルを試す

Villazan Impastato Gabriel

メンバー加入日: 2019

Gemini in Google Meet Earned 4月 25, 2024 EDT
Gemini in Google スプレッドシート Earned 4月 25, 2024 EDT
Gemini in Google ドキュメント Earned 1月 23, 2024 EST
Gemini in Google Meet Earned 1月 22, 2024 EST
Gemini in Google スライド Earned 1月 22, 2024 EST
Generative AI Explorer - Vertex AI Earned 10月 19, 2023 EDT
画像キャプション モデルの作成 Earned 6月 19, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 6月 19, 2023 EDT
責任ある AI の概要 Earned 6月 19, 2023 EDT
Vertex AI Studio の概要 Earned 6月 13, 2023 EDT
Generative AI Fundamentals - 日本語版 Earned 6月 6, 2023 EDT
画像生成の概要 Earned 5月 19, 2023 EDT
Transformer モデルと BERT モデル Earned 5月 10, 2023 EDT
アテンション機構 Earned 5月 10, 2023 EDT
大規模言語モデルの概要 Earned 5月 10, 2023 EDT
生成 AI の概要 Earned 5月 10, 2023 EDT
Building No-Code AppSheet Apps Earned 2月 16, 2023 EST
NCAA® March Madness®: Bracketology with Google Cloud Earned 2月 14, 2023 EST
Perform Predictive Data Analysis in BigQuery Earned 2月 13, 2023 EST
ML のための BigQuery Earned 2月 8, 2023 EST
DEPRECATED Applying BigQuery ML's Classification, Regression, and Demand Forecasting for Retail Applications Earned 2月 8, 2023 EST
BigQuery ML を使用した ML モデルの作成 Earned 2月 7, 2023 EST

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。このコースでは、Google Meet での Gemini の機能について掘り下げます。動画レッスン、ハンズオン アクティビティ、実用的な例を通じて Google Meet の Gemini 機能を総合的に理解し、Gemini を使用した背景画像の生成、ビデオ通話の映りの改善、字幕翻訳の方法を学びます。このコースを修了すると、Google Meet で Gemini を自信を持って活用し、ビデオ会議の効果を最大限に高めるための知識とスキルを身に付けられます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スプレッドシートの生産性と効率を向上させる方法について学びます。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。動画レッスン、ハンズオン アクティビティ、実用的な例を使用して、Gemini in Google ドキュメントの機能について詳しく説明します。Gemini を使用して、プロンプトに基づいて文書のコンテンツを生成する方法を学びます。また、Gemini を使用して、記述済みのテキストを編集し、全体的な生産性の向上を支援することも検討します。このコースを修了すると、自信を持って Gemini in Google ドキュメントを活用し、文章作成能力を向上させるための知識やスキルを身に付けることができます。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。このコースでは、Google Meet での Gemini の機能について掘り下げます。動画レッスン、ハンズオン アクティビティ、実用的な例を通じて Google Meet の Gemini 機能を総合的に理解し、Gemini を使用した背景画像の生成、ビデオ通話の映りの改善、字幕翻訳の方法を学びます。このコースを修了すると、Google Meet で Gemini を自信を持って活用し、ビデオ会議の効果を最大限に高めるための知識とスキルを身に付けられます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スライドの生産性と効率を向上させる方法について学びます。

詳細

「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

This course introduces you to the fundamentals of no-code application development and the capabilities offered by Google Cloud's AppSheet. AppSheet helps in digitizing and automating manual or paper-based business processes to turn them into mobile and web apps.

詳細

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

詳細

Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.

詳細

SQL だけを使用して、数時間ではなく数分で ML モデルを構築したいとお考えの場合、BigQuery ML は、データ アナリストが既存の SQL ツールやスキルを使って、ML モデルを作成、トレーニング、 評価し、そのモデルで予測を行うことを可能にして、ML をより多くの人が利用できるようにします。 この一連のラボでは、さまざまなモデルタイプを試して、 優れたモデルを作成する方法を学習します。

詳細

In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.

詳細

「BigQuery ML を使用した ML モデルの作成」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細