Gemini para Google Workspace es un complemento que les proporciona a los usuarios acceso a funciones potenciadas por IA generativa. En este curso, se profundiza en las capacidades de Gemini en Google Meet. A través de lecciones en video y actividades y ejemplos prácticos, comprenderás de manera integral las funciones de Gemini en Google Meet. Aprenderás a usar Gemini para generar imágenes de fondo, mejorar la calidad de tus videos y presentar subtítulos traducidos. Al final de este curso, contarás con los conocimientos y las habilidades necesarios para utilizar Gemini en Google Meet con confianza para maximizar la eficacia de tus videoconferencias.
Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En este minicurso, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Hojas de cálculo de Google.
Gemini para Google Workspace es un complemento que les proporciona a los usuarios acceso a funciones potenciadas por IA generativa. En este curso, se profundiza en las capacidades de Gemini en Documentos de Google a través de lecciones en video y actividades y ejemplos prácticos. Descubre cómo usar Gemini para generar contenido escrito basado en instrucciones. También explorarás el uso de Gemini para editar el texto que ya escribiste, lo que te ayudará a mejorar tu productividad general. Al final del curso, contarás con los conocimientos y las habilidades necesarios para usar Gemini en Documentos de Google con confianza y mejorar tu escritura.
Gemini para Google Workspace es un complemento que les proporciona a los usuarios acceso a funciones potenciadas por IA generativa. En este curso, se profundiza en las capacidades de Gemini en Google Meet. A través de lecciones en video y actividades y ejemplos prácticos, comprenderás de manera integral las funciones de Gemini en Google Meet. Aprenderás a usar Gemini para generar imágenes de fondo, mejorar la calidad de tus videos y presentar subtítulos traducidos. Al final de este curso, contarás con los conocimientos y las habilidades necesarios para utilizar Gemini en Google Meet con confianza para maximizar la eficacia de tus videoconferencias.
Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En este minicurso, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Presentaciones de Google.
El curso Explorador de IA generativa - Vertex AI es una colección de labs sobre cómo usar la IA generativa en Google Cloud. A través de los labs, aprenderás sobre cómo usar los modelos de la familia de APIs de PaLM de Vertex AI, incluidos text-bison, chat-bison y textembedding-gecko. También aprenderás sobre el diseño de instrucciones, las prácticas recomendadas y cómo se puede usar para la ideación, la clasificación, la extracción y el resumen de texto, y mucho más. También aprenderás a ajustar un modelo de base mediante el entrenamiento personalizado de Vertex AI y, luego, implementarlo en un extremo de Vertex AI.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
Completa los cursos Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI para obtener una insignia de habilidad. Aprueba el cuestionario final para demostrar que entiendes los conceptos básicos sobre la IA generativa. Una insignia de habilidad es una insignia digital que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma. Para compartir tu insignia de habilidad, establece tu perfil como público y agrega la insignia a tu perfil de redes sociales.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
This course introduces you to the fundamentals of no-code application development and the capabilities offered by Google Cloud's AppSheet. AppSheet helps in digitizing and automating manual or paper-based business processes to turn them into mobile and web apps.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.
¿Quieres compilar modelos de AA en minutos en lugar de horas utilizando únicamente SQL? BigQuery ML democratiza el aprendizaje automático, ya que permite que los analistas de datos creen, entrenen, evalúen y realicen predicciones con modelos de aprendizaje automático a través de herramientas y habilidades de SQL existentes. En esta serie de labs, experimentarás con diferentes tipos de modelos y aprenderás cuáles son las características de un buen modelo.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
Obtén la insignia de habilidad intermedia Crea modelos de AA con BigQuery ML y demuestra tus habilidades para crear y evaluar modelos de aprendizaje automático con BigQuery ML para realizar predicciones de datos. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tu red.