Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen. In diesem Kurs geht es um Gemini in Google Meet. Durch Videokurse, praxisorientierte Aktivitäten und praktische Beispiele lernen Sie die Gemini-Funktionen in Google Meet kennen. Sie erfahren, wie Sie mit Gemini Hintergrundbilder generieren, die Videoqualität verbessern und Untertitel übersetzen können. Am Ende dieses Kurses können Sie Gemini in Google Meet sicher anwenden und Videokonferenzen damit noch effektiver durchführen.
Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen in Google Workspace. Dieser Mini-Kurs vermittelt Ihnen die wichtigsten Gemini-Funktionen. Sie erfahren, wie Sie diese Funktionen in Google Sheets einsetzen können, um produktiver und effizienter zu arbeiten.
Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen. In diesem Kurs geht es anhand von Videolektionen, praktischen Übungen und Anwendungsbeispielen um die Funktionen von Gemini in Google Docs. Sie lernen, wie Sie mit Gemini und Prompts schriftliche Inhalte erstellen. Außerdem erfahren Sie, wie Sie Gemini zum Bearbeiten bereits geschriebener Texte verwenden, um Ihre Gesamtproduktivität zu steigern. Am Ende dieses Kurses können Sie Gemini in Google Docs sicher anwenden und bessere Texte verfassen.
Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen. In diesem Kurs geht es um Gemini in Google Meet. Durch Videokurse, praxisorientierte Aktivitäten und praktische Beispiele lernen Sie die Gemini-Funktionen in Google Meet kennen. Sie erfahren, wie Sie mit Gemini Hintergrundbilder generieren, die Videoqualität verbessern und Untertitel übersetzen können. Am Ende dieses Kurses können Sie Gemini in Google Meet sicher anwenden und Videokonferenzen damit noch effektiver durchführen.
Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen in Google Workspace. Dieser Mini-Kurs vermittelt Ihnen die wichtigsten Gemini-Funktionen. Sie erfahren, wie Sie diese Funktionen in Google Präsentationen einsetzen können, um produktiver und effizienter zu arbeiten.
Der Kurs „Generative KI kennenlernen – Vertex AI“ umfasst eine Reihe von Labs zur Verwendung von generativer KI in Google Cloud. In den Labs lernen Sie, wie Sie die Modelle der Vertex AI PaLM API-Familie verwenden, einschließlich text-bison, chat-bison, und textembedding-gecko. Außerdem lernen Sie, wie Sie Prompts gestalten, Best Practices anwenden und die Modelle für Ideenfindung, Textklassifizierung, Textextraktion, Textzusammenfassungen und mehr verwenden. Weiterhin erfahren Sie, wie Sie ein Foundation Model durch das Trainieren über benutzerdefiniertes Training in Vertex AI optimieren und es in einem Vertex AI-Endpunkt bereitstellen.
In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln
Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
This course introduces you to the fundamentals of no-code application development and the capabilities offered by Google Cloud's AppSheet. AppSheet helps in digitizing and automating manual or paper-based business processes to turn them into mobile and web apps.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.
Sie möchten Machine-Learning-Modelle mithilfe von SQL in Minuten statt in Stunden erstellen? BigQuery ML sorgt für eine breite Nutzung von Machine Learning, indem es Datenanalysten ermöglicht, ML-Modelle zu erstellen, zu trainieren und zu bewerten sowie mit den Modellen und vorhandenen SQL-Tools und ‑Fähigkeiten Vorhersagen zu treffen. In dieser Lab-Reihe experimentieren Sie mit verschiedenen Modelltypen und erfahren, was für ein gutes Modell notwendig ist.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.