参加 ログイン

Google Cloud コンソールでスキルを試す

Perdana Putra Muhammad Rizki

メンバー加入日: 2020

シルバーリーグ

6430 ポイント
Google Cloud での Kubernetes の管理 Earned 2月 8, 2025 EST
Google Cloud での Kubernetes アプリケーションのデプロイ Earned 2月 4, 2025 EST
画像生成の概要 Earned 2月 4, 2025 EST
Google Cloud における AI と ML の概要 Earned 2月 4, 2025 EST
Vertex AI におけるプロンプト設計 Earned 2月 3, 2025 EST
ML 入門: 画像処理 Earned 3月 25, 2020 EDT

Google Cloud での Kubernetes の管理」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 kubectl を活用したデプロイの管理、 Google Kubernetes Engine(GKE)でのアプリケーションのモニタリングとデバッグ、継続的デリバリーの手法におけるスキルを実証できます。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得してネットワークで共有しましょう。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

大規模なコンピューティング能力を使用してパターンを認識し、 画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです 。 Google Cloud Platform は、 API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供します。 こうした機能とさまざまな API を備えた GCP のツールを使えば、 ほぼあらゆる ML ジョブに対応できます。 この入門コースでは、 画像処理に用いられる ML の実践的な演習を行います。 ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、 画像内のテキストを抽出、分析、翻訳したりすることができます。

詳細