Iyan Fazriansyah Sukmana
成为会员时间:2024
黄金联赛
20595 积分
成为会员时间:2024
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助分析客戶資料及預測產品銷售情形。您也會學習如何在 BigQuery 中使用客戶資料識別、分類及開發新客戶。透過使用實作研究室,您可以體驗 Gemini 如何改良資料分析和機器學習工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
這個簡短的課程會說明如何在 Google Cloud 整合應用程式與 Gemini 1.0 Pro 模型,讓您瞭解 Gemini API 及其生成式 AI 模型,並學習如何透過程式碼存取 Gemini 1.0 Pro 和 Gemini 1.0 Pro Vision 模型。另外,您會在應用程式中使用文字、圖片和影片提示,測試模型的功能。
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
完成「運用 BigQuery ML 建立機器學習模型」技能徽章中階課程,即可證明您具備下列技能: 可使用 BigQuery ML 建立及評估機器學習模型,並根據資料進行預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與他人分享。
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
探索生成式 AI - Vertex AI 課程包含一系列實驗室,幫助您瞭解 如何在 Google Cloud 使用生成式 AI。透過實驗室,您將瞭解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison、 和 textembedding-gecko。您也會瞭解提示設計、最佳做法、 以及這些模型如何用於構思、文字分類、文字擷取、文字 摘要等。您也會瞭解如何透過 Vertex AI 自訂訓練功能調整基礎模型, 並將模型部署至 Vertex AI 端點。
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
大家都知道,機器學習是發展最快的科技領域之一, 而 Google Cloud Platform 在這方面功不可沒。 GCP 提供多種 API,凡是與機器學習相關的任務,幾乎都能處理。您將在本入門課程的 實驗室,實際演練機器學習技術 在語言處理方面的應用,學會如何從文中擷取實體資訊、 執行情緒和語法分析,並使用 Speech-to-Text API 轉錄語音。
大數據、機器學習和人工智慧 (AI) 是時下熱門的 電腦相關話題,但這些領域相當專業,就算想要入門 也難以取得教材或資料。幸好,Google Cloud 提供了此領域的多種服務,而且容易使用。 參加這堂入門課程,您就能踏出第一步, 開始學習運用 BigQuery、Cloud Speech API 以及 Video Intelligence 等工具。