El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.
El curso Explorador de IA generativa - Vertex AI es una colección de labs sobre cómo usar la IA generativa en Google Cloud. A través de los labs, aprenderás sobre cómo usar los modelos de la familia de APIs de PaLM de Vertex AI, incluidos text-bison, chat-bison y textembedding-gecko. También aprenderás sobre el diseño de instrucciones, las prácticas recomendadas y cómo se puede usar para la ideación, la clasificación, la extracción y el resumen de texto, y mucho más. También aprenderás a ajustar un modelo de base mediante el entrenamiento personalizado de Vertex AI y, luego, implementarlo en un extremo de Vertex AI.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
Completa los cursos Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI para obtener una insignia de habilidad. Aprueba el cuestionario final para demostrar que entiendes los conceptos básicos sobre la IA generativa. Una insignia de habilidad es una insignia digital que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma. Para compartir tu insignia de habilidad, establece tu perfil como público y agrega la insignia a tu perfil de redes sociales.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los estudiantes obtendrán experiencia práctica con la transferencia de transmisión de Vertex AI Feature Store en la capa de SDK.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.
En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.
En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.
En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.
El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.