参加 ログイン

Google Cloud コンソールでスキルを試す

Torres Luis

メンバー加入日: 2023

Getting Started with Application Development - 日本語版 Earned 4月 11, 2024 EDT
Create and Manage AlloyDB Instances Earned 4月 8, 2024 EDT
Create and Manage Bigtable Instances Earned 4月 6, 2024 EDT
Create and Manage Cloud Spanner Instances Earned 4月 4, 2024 EDT
Migrate MySQL data to Cloud SQL using Database Migration Service Earned 4月 3, 2024 EDT
Create and Manage Cloud SQL for PostgreSQL Instances Earned 3月 31, 2024 EDT
Enterprise Database Migration Earned 3月 26, 2024 EDT
Google Cloud の基礎: コア インフラストラクチャ Earned 2月 28, 2024 EST
Building No-Code Apps with AppSheet: Automation Earned 2月 6, 2024 EST
Building No-Code Apps with AppSheet: Implementation Earned 2月 3, 2024 EST
Building No-Code Apps with AppSheet: Foundations Earned 1月 26, 2024 EST
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング Earned 1月 8, 2024 EST
Professional Data Engineer の取得に向けた準備 Earned 12月 18, 2023 EST
Dataplex を使ってみる Earned 12月 8, 2023 EST
BigQuery でデータ ウェアハウスを構築する Earned 12月 4, 2023 EST
Google Cloud の ML API 用にデータを準備 Earned 11月 30, 2023 EST
Dataflow を使用したサーバーレスのデータ処理: パイプラインの開発 Earned 11月 25, 2023 EST
Dataflow を使用したサーバーレスのデータ処理: 運用 Earned 11月 24, 2023 EST
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 11月 17, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 11月 16, 2023 EST
Google Cloud における復元力のあるストリーミング分析システムの構築 Earned 11月 7, 2023 EST
Google Cloud でのバッチデータ パイプラインの構築 Earned 11月 5, 2023 EST
Google Cloud を使用したデータレイクとデータ ウェアハウスのモダナイゼーション Earned 11月 1, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 10月 30, 2023 EDT

アプリケーション デベロッパーは、このコースを通して、Google Cloud のマネージド サービスをシームレスに統合するクラウドネイティブ アプリケーションの設計方法と開発方法を学びます。講義、デモ、ハンズオンラボを通して、アプリケーション開発のベスト プラクティスを適用する方法、さらに、オブジェクト ストレージやリレーショナル データ、キャッシュ保存、分析に適切な Google Cloud ストレージ サービスを使用する方法を学習します。 各ラボのいずれかのバージョンを修了する必要があります。各ラボは Node.js で提供されます。ほとんどの場合、同じラボが Python または Java でも提供されます。各ラボをご希望の言語で修了できます。 これは「Developing Applications with Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Securing and Integrating Components of your Application」コースに登録してください。

詳細

Complete the introductory Create and Manage AlloyDB Instances skill badge to demonstrate skills in the following: performing core AlloyDB operations and tasks, migrating to AlloyDB from PostgreSQL, administering an AlloyDB database, and accelerating analytical queries using the AlloyDB Columnar Engine.

詳細

Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.

詳細

Complete the introductory Create and Manage Cloud Spanner Instances skill badge to demonstrate skills in the following: creating and interacting with Cloud Spanner instances and databases; loading Cloud Spanner databases using various techniques; backing up Cloud Spanner databases; defining schemas and understanding query plans; and deploying a Modern Web App connected to a Cloud Spanner instance.

詳細

Complete the introductory Migrate MySQL data to Cloud SQL using Database Migration Services skill badge to demonstrate skills in the following: migrating MySQL data to Cloud SQL using different job types and connectivity options available in Database Migration Service and migrating MySQL user data when running Database Migration Service jobs. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

詳細

Complete the introductory Create and Manage Cloud SQL for PostgreSQL Instances skill badge to demonstrate skills in the following: migrating, configuring, and managing Cloud SQL for PostgreSQL instances and databases.

詳細

This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

This course helps you recognize the need to implement business process automation in your organization. You learn about automation patterns and use cases, and how to use AppSheet constructs to implement automation in your app. You learn about the various features of AppSheet automation, and integrate your app with Google Workspace products. You also learn how to send email, push notifications and text messages from your app, parse documents and generate reports with AppSheet automation.

詳細

This course teaches you how to implement various capabilities that include data organization and management, application security, actions and integrations in your app using AppSheet. The course also includes topics on managing and upgrading your app, improving performance and troubleshooting issues with your app.

詳細

In this course you will learn the fundamentals of no-code app development and recognize use cases for no-code apps. The course provides an overview of the AppSheet no-code app development platform and its capabilities. You learn how to create an app with data from spreadsheets, create the app’s user experience using AppSheet views and publish the app to end users.

詳細

BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジ コースと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

「Dataplex を使ってみる」コースを修了して初級スキルバッジを獲得することで、 Dataplex アセットの作成、アスペクト タイプの作成、 Dataplex のエントリへのアスペクトの適用に関するスキルを実証できます。

詳細

「BigQuery でデータ ウェアハウスを構築する」スキルバッジを獲得できる中級コースを修了すると、 データの結合による新しいテーブルの作成、結合のトラブルシューティング、UNION を使用したデータの連結、日付パーティション分割テーブルの作成、 BigQuery での JSON、配列、構造体の操作に関するスキルを証明できます。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。

詳細

Dataflow コースシリーズの 2 回目である今回は、Beam SDK を使用したパイプラインの開発について詳しく説明します。まず、Apache Beam のコンセプトについて復習します。次に、ウィンドウ、ウォーターマーク、トリガーを使用したストリーミング データの処理について説明します。さらに、パイプラインのソースとシンクのオプション、構造化データを表現するためのスキーマ、State API と Timer API を使用してステートフル変換を行う方法について説明します。続いて、パイプラインのパフォーマンスを最大化するためのベスト プラクティスを再確認します。コースの終盤では、Beam でビジネス ロジックを表現するための SQL と DataFrame、および Beam ノートブックを使用してパイプラインを反復的に開発する方法を説明します。

詳細

Dataflow シリーズの最後のコースでは、Dataflow 運用モデルのコンポーネントを紹介します。パイプラインのパフォーマンスのトラブルシューティングと最適化に役立つツールと手法を検証した後で、Dataflow パイプラインのテスト、デプロイ、信頼性に関するベスト プラクティスについて確認します。最後に、数百人のユーザーがいる組織に対して Dataflow パイプラインを簡単に拡張するためのテンプレートについても確認します。これらの内容を習得することで、データ プラットフォームの安定性を保ち、予期せぬ状況に対する回復力を確保できるようになります。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

通常、データ パイプラインは、「抽出、読み込み(EL)」、「抽出、読み込み、変換(ELT)」、「抽出、変換、読み込み(ETL)」のいずれかの考え方に分類できます。このコースでは、バッチデータではどの枠組みを、どのような場合に使用するのかについて説明します。本コースではさらに、BigQuery、Dataproc 上での Spark の実行、Cloud Data Fusion のパイプラインのグラフ、Dataflow でのサーバーレスのデータ処理など、データ変換用の複数の Google Cloud テクノロジーについて説明します。また、Qwiklabs を使用して Google Cloud でデータ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細