Michał Garnuch
회원 가입일: 2024
실버 리그
43087포인트
회원 가입일: 2024
인공지능(AI)은 혁신적인 가능성을 제공하지만 새로운 보안 문제의 원인이 되기도 합니다. 이 과정에서는 보안 및 데이터 보호 리더가 조직 내에서 AI를 안전하게 관리하는 데 필요한 전략을 살펴봅니다. AI 관련 위험을 사전에 식별 및 완화하고, 민감한 정보를 보호하며, 규정을 준수하고, 복원력 높은 AI 인프라를 빌드하는 프레임워크를 학습합니다. 이러한 전략이 실제 시나리오에서 어떻게 적용되는지 살펴보기 위해 4가지 산업별 사례를 선별했습니다.
이 과정은 머신러닝 실무자에게 생성형 AI 모델과 예측형 AI 모델을 평가하는 데 필요한 도구, 기술, 권장사항을 제공합니다. 모델 평가는 프로덕션 단계의 ML 시스템이 안정적이고 정확하고 성능이 우수한 결과를 제공할 수 있게 하는 중요한 분야입니다. 강의 참가자는 다양한 평가 측정항목, 방법, 각각 다른 모델 유형과 작업에 적합한 애플리케이션에 대해 깊이 있게 이해할 수 있습니다. 이 과정에서는 생성형 AI 모델의 고유한 문제를 강조하고 이를 효과적으로 해결하기 위한 전략을 소개합니다. 강의 참가자는 Google Cloud의 Vertex AI Platform을 활용해 모델 선택, 최적화, 지속적인 모니터링을 위한 견고한 평가 프로세스를 구현하는 방법을 알아볼 수 있습니다.
이 과정에서는 AI 개인 정보 보호 및 안전에 관한 중요한 주제를 소개합니다. Google Cloud 제품과 오픈소스 도구를 사용하여 AI 개인 정보 보호 및 안전 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.
이 과정에서는 AI 해석 가능성과 투명성의 개념을 소개합니다. 개발자와 엔지니어에게 AI 투명성이 얼마나 중요한지를 설명합니다. 데이터와 AI 모델 모두에서 해석 가능성과 투명성을 구현하는 데 도움이 되는 실용적인 방법과 도구를 살펴봅니다.
이 과정에서는 책임감 있는 AI라는 개념과 AI 원칙을 소개합니다. 공정성과 편향을 실질적으로 식별하고 AI/ML 실무에서 편향을 완화하는 기법을 알아봅니다. Google Cloud 제품과 오픈소스 도구를 사용하여 책임감 있는 AI 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.
중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.
This video covers how you can leverage Gemini's advanced AI capabilities within Google Sheets to effortlessly pull data and generate insights in minutes, all without the need for any technical or coding background.
This video will cover how to leverage Gemini Gems to create authentic social media posts in your leader's unique voice. Learn to overcome the challenge of scaling executive social presence by training a Gem with writing samples and clear instructions. Discover how to generate engaging posts quickly, saving time while amplifying thought leadership and ensuring authenticity.
This video covers how you can create your own Brevity Gem to summarize and transform messy notes or long documents into clear, concise, executive-ready summaries.
This video covers how you can leverage Notebook LM to "eat the frog" on your to-do list by automating complex tasks like summarizing legislation and mapping services, saving you hours of work.
This video covers how to eliminate tedious manual data entry using Gemini. Learn how to take a picture or screenshot of data (from PDFs, paper, or images) and prompt Gemini to instantly convert it into a structured Google Sheet. Discover this simple hack to save countless hours transcribing data, turning Gemini into your personal data entry assistant. Just snap, prompt, and export!
AI Boost Bites is a video series designed to help you leverage Google's AI tools in your daily work. Each episode, under 10 minutes, features a quick video demonstrating a real-world AI use case or topic. After the video, you'll get a challenge to apply what you've learned. It's an easy, interactive way to boost your AI skills and improve your productivity.
This video will cover how to use NotebookLM to gather and analyze publicly available information, combine it with internal documents, and extract key competitive insights.
This video covers how you can use Gemini to summarize long documents in Google Workspace, so you can quickly get the information you need and save time. You'll learn how to use Gemini to summarize entire documents or just selected text, as well as how to use Gemini in Drive to summarize across multiple files.
This video covers how NotebookLM can revolutionize customer insight gathering from call or chat transcripts. You'll learn to upload PDF transcripts of hundreds of conversations (even multilingual ones!) and quickly extract key themes, trending topics, and actionable insights without listening for hours. Discover how to save findings, share notebooks, and even generate interactive podcast summaries of your data.
This video covers how to create your own Gemini Gems, advanced AI capabilities that can automate repetitive tasks and supercharge your productivity.
이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.
이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.
이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.
이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.
이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.
이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.
이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 고객 데이터를 분석하고 제품 판매를 예측하는 데 어떤 도움이 되는지 알아봅니다. BigQuery에서 고객 데이터를 사용해 신규 고객을 식별, 분류, 개발하는 방법도 다룹니다. 실무형 실습을 통해 Gemini로 데이터 분석 및 머신러닝 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 Google 제품 및 서비스를 사용해 애플리케이션을 개발, 테스트, 배포, 관리하는 데 어떤 도움이 되는지 알아봅니다. Gemini의 도움을 받아 웹 애플리케이션을 개발 및 빌드하고, 애플리케이션의 오류를 수정하고, 테스트를 개발하고, 데이터를 쿼리하는 방법을 배웁니다. 실무형 실습을 통해 Gemini로 소프트웨어 개발 수명 주기(SDLC)가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 엔지니어가 Google Cloud의 생성형 AI 기반 파트너인 Gemini의 도움을 받아 인프라를 관리하는 방법을 알아봅니다. 애플리케이션 로그를 찾고 이해하며, GKE 클러스터를 생성하고, 빌드 환경을 만드는 방법을 조사하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 DevOps 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 도구인 Gemini가 클라우드 환경 및 리소스 보호에 어떤 도움이 되는지 알아봅니다. Google Cloud의 환경에 예시 워크로드를 배포하고, Gemini를 이용해 잘못된 보안 구성을 확인 및 해결하는 방법을 배웁니다. 실무형 실습을 통해 Gemini가 클라우드 보안 상황을 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 네트워크 엔지니어의 VPC 네트워크 생성, 업데이트, 유지보수에 어떤 도움이 되는지 알아봅니다. Gemini에 프롬프트를 입력하여 검색엔진에서 얻을 수 있는 결과보다 더 구체적인 네트워킹 작업 안내를 얻는 방법을 학습합니다. 실무형 실습을 통해 Gemini로 Google Cloud VPC 네트워크 작업이 얼마나 쉬워지는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 도우미인 Gemini가 관리자의 인프라 프로비저닝을 어떻게 도와주는지 알아봅니다. 인프라에 관해 설명하고, GKE 클러스터를 배포하고, 기존 인프라를 업데이트하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 또한 실무형 실습을 통해 Gemini가 GKE 배포 워크플로를 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요.
기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요.
입문 Compute Engine에서 부하 분산 구현 기술 배지 과정을 완료하여 gcloud 명령어 작성 및 Cloud Shell 사용, Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 HTTP 부하 분산기 구성에 관한 본인의 기술을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 개인의 숙련도를 인정하기 위해 Google Cloud에서 단독 발급하는 디지털 배지로서 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트합니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.
안전한 Google Cloud 네트워크 빌드 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 Google Cloud에서 애플리케이션을 빌드, 확장, 보호하는 데 필요한 다양한 네트워킹 관련 리소스에 대해 배울 수 있습니다.
Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.