Michał Garnuch
Member since 2024
Silver League
43087 points
Member since 2024
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.
This course introduces important topics of AI privacy and safety. It explores practical methods and tools to implement AI privacy and safety recommended practices through the use of Google Cloud products and open-source tools.
This course introduces concepts of AI interpretability and transparency. It discusses the importance of AI transparency for developers and engineers. It explores practical methods and tools to help achieve interpretability and transparency in both data and AI models.
This course introduces concepts of responsible AI and AI principles. It covers techniques to practically identify fairness and bias and mitigate bias in AI/ML practices. It explores practical methods and tools to implement Responsible AI best practices using Google Cloud products and open source tools.
Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge course to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini.
Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.
This video covers how you can leverage Gemini's advanced AI capabilities within Google Sheets to effortlessly pull data and generate insights in minutes, all without the need for any technical or coding background.
This video will cover how to leverage Gemini Gems to create authentic social media posts in your leader's unique voice. Learn to overcome the challenge of scaling executive social presence by training a Gem with writing samples and clear instructions. Discover how to generate engaging posts quickly, saving time while amplifying thought leadership and ensuring authenticity.
This video covers how you can create your own Brevity Gem to summarize and transform messy notes or long documents into clear, concise, executive-ready summaries.
This video covers how you can leverage Notebook LM to "eat the frog" on your to-do list by automating complex tasks like summarizing legislation and mapping services, saving you hours of work.
This video covers how to eliminate tedious manual data entry using Gemini. Learn how to take a picture or screenshot of data (from PDFs, paper, or images) and prompt Gemini to instantly convert it into a structured Google Sheet. Discover this simple hack to save countless hours transcribing data, turning Gemini into your personal data entry assistant. Just snap, prompt, and export!
AI Boost Bites is a video series designed to help you leverage Google's AI tools in your daily work. Each episode, under 10 minutes, features a quick video demonstrating a real-world AI use case or topic. After the video, you'll get a challenge to apply what you've learned. It's an easy, interactive way to boost your AI skills and improve your productivity.
This video will cover how to use NotebookLM to gather and analyze publicly available information, combine it with internal documents, and extract key competitive insights.
This video covers how you can use Gemini to summarize long documents in Google Workspace, so you can quickly get the information you need and save time. You'll learn how to use Gemini to summarize entire documents or just selected text, as well as how to use Gemini in Drive to summarize across multiple files.
This video covers how NotebookLM can revolutionize customer insight gathering from call or chat transcripts. You'll learn to upload PDF transcripts of hundreds of conversations (even multilingual ones!) and quickly extract key themes, trending topics, and actionable insights without listening for hours. Discover how to save findings, share notebooks, and even generate interactive podcast summaries of your data.
This video covers how to create your own Gemini Gems, advanced AI capabilities that can automate repetitive tasks and supercharge your productivity.
This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.
בקורס הזה נלמד על Generative AI Studio, מוצר ב-Vertex AI שעוזר ליצור אבות טיפוס למודלים של בינה מלאכותית גנרטיבית, כדי להשתמש בהם ולהתאים אותם לפי הצרכים שלכם. באמצעות הדגמה של המוצר עצמו, נלמד מהו Generative AI Studio, מהם הפיצ'רים והאפשרויות שלו, ואיך להשתמש בו. בסוף הקורס יהיה שיעור Lab מעשי לתרגול של מה שנלמד, ובוחן לבדיקת הידע.
בקורס הזה תלמדו איך ליצור מודל הוספת כיתוב לתמונה באמצעות למידה עמוקה (Deep Learning). אתם תלמדו על הרכיבים השונים במודל הוספת כיתוב לתמונה, כמו המקודד והמפענח, ואיך לאמן את המודל ולהעריך את הביצועים שלו. בסוף הקורס תוכלו ליצור מודלים להוספת כיתוב לתמונה ולהשתמש בהם כדי ליצור כיתובים לתמונות
בקורס הזה נציג את הארכיטקטורה של טרנספורמרים ואת המודל של ייצוגים דו-כיווניים של מקודד מטרנספורמרים (BERT). תלמדו על החלקים השונים בארכיטקטורת הטרנספורמר, כמו מנגנון תשומת הלב, ועל התפקיד שלו בבניית מודל BERT. תלמדו גם על המשימות השונות שאפשר להשתמש ב-BERT כדי לבצע אותן, כמו סיווג טקסטים, מענה על שאלות והֶקֵּשׁ משפה טבעית. נדרשות כ-45 דקות כדי להשלים את הקורס הזה.
בקורס הזה לומדים בקצרה על ארכיטקטורת מקודד-מפענח, ארכיטקטורה עוצמתית ונפוצה ללמידת מכונה שמשתמשים בה במשימות של רצף לרצף, כמו תרגום אוטומטי, סיכום טקסט ומענה לשאלות. תלמדו על החלקים השונים בארכיטקטורת מקודד-מפענח, איך לאמן את המודלים האלה ואיך להשתמש בהם. בהדרכה המפורטת המשלימה בשיעור ה-Lab תקודדו ב-TensorFlow תרחיש שימוש פשוט בארכיטקטורת מקודד-מפענח: כתיבת שיר מאפס.
בקורס נלמד על מנגנון תשומת הלב, שיטה טובה מאוד שמאפשרת לרשתות נוירונים להתמקד בחלקים ספציפיים ברצף הקלט. נלמד איך עובד העיקרון של תשומת הלב, ואיך אפשר להשתמש בו כדי לשפר את הביצועים במגוון משימות של למידת מכונה, כולל תרגום אוטומטי, סיכום טקסט ומענה לשאלות.
בקורס נלמד על מודלים של דיפוזיה, משפחת מודלים של למידת מכונה שיצרו הרבה ציפיות לאחרונה בתחום של יצירת תמונות. מודלים של דיפוזיה שואבים השראה מפיזיקה, וספציפית מתרמודינמיקה. בשנים האחרונות, מודלים של דיפוזיה הפכו לפופולריים גם בתחום המחקר וגם בתעשייה. מודלים של דיפוזיה עומדים מאחורי הרבה מהכלים והמודלים החדשניים ליצירת תמונות ב-Google Cloud. בקורס הזה נלמד על התיאוריה שמאחורי מודלים של דיפוזיה, ואיך לאמן ולפרוס אותם ב-Vertex AI.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you use Google products and services to develop, test, deploy, and manage applications. With help from Gemini, you learn how to develop and build a web application, fix errors in the application, develop tests, and query data. Using a hands-on lab, you experience how Gemini improves the software development lifecycle (SDLC). Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps engineers manage infrastructure. You learn how to prompt Gemini to find and understand application logs, create a GKE cluster, and investigate how to create a build environment. Using a hands-on lab, you experience how Gemini improves the DevOps workflow. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you secure your cloud environment and resources. You learn how to deploy example workloads into an environment in Google Cloud, identify security misconfigurations with Gemini, and remediate security misconfigurations with Gemini. Using a hands-on lab, you experience how Gemini improves your cloud security posture. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps network engineers create, update, and maintain VPC networks. You learn how to prompt Gemini to provide specific guidance for your networking tasks, beyond what you would receive from a search engine. Using a hands-on lab, you experience how Gemini makes it easier for you to work with Google Cloud VPC networks. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps administrators provision infrastructure. You learn how to prompt Gemini to explain infrastructure, deploy GKE clusters and update existing infrastructure. Using a hands-on lab, you experience how Gemini improves the GKE deployment workflow. Duet AI was renamed to Gemini, our next-generation model.
Complete the introductory Prompt Design in Vertex AI skill badge to demonstrate skills in the following: prompt engineering, image analysis, and multimodal generative techniques, within Vertex AI. Discover how to craft effective prompts, guide generative AI output, and apply Gemini models to real-world marketing scenarios.
As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.
זהו קורס מבוא ממוקד שמטרתו להסביר מהי אתיקה של בינה מלאכותית, למה היא חשובה ואיך Google נוהגת לפי כללי האתיקה של הבינה המלאכותית במוצרים שלה. מוצגים בו גם 7 עקרונות ה-AI של Google.
זהו קורס מבוא ממוקד שבוחן מהם מודלים גדולים של שפה (LLM), איך משתמשים בהם בתרחישים שונים לדוגמה ואיך אפשר לשפר את הביצועים שלהם באמצעות כוונון של הנחיות. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.
זהו קורס מבוא ממוקד שמטרתו להסביר מהי בינה מלאכותית גנרטיבית, איך משתמשים בה ובמה היא שונה משיטות מסורתיות של למידת מכונה. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.
Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API.
Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.
Earn a skill badge by completing the Build a Secure Google Cloud Network skill badge course, where you will learn about multiple networking-related resources to build, scale, and secure your applications on Google Cloud.
Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud skill badge course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.
הקורס בוחן ניהול עלויות, אבטחה ותפעול בענן. ראשית, מוסבר איך עסקים יכולים לרכוש שירותי IT מספק שירותי ענן ולשמר חלק מהתשתית שלהם או לבחור לא לשמר אותה בכלל. שנית, הקורס מתאר איך האחריות על אבטחת נתונים מתחלקת בין ספק שירותי הענן לעסק, וסוקר את אבטחת ההגנה לעומק (defense-in-depth) שמובנית ב-Google Cloud. לבסוף, הקורס מתייחס לכך שצוותי IT ומנהלי העסק צריכים לשנות את החשיבה על ניהול משאבי IT בענן, ונוגע באופן שבו כלי ניטור המשאבים ב-Google Cloud יכולים לסייע להם לשמור על שליטה וניראות בסביבת הענן שלהם.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
בארגונים מסורתיים רבים משתמשים במערכות ובאפליקציות מדורות קודמים, וקשה לבצע באמצעותן התאמה לעומס ופעולות מהירות הדרושות כדי לעמוד בציפיות מודרניות של לקוחות. מנהיגים עסקיים וקובעי מדיניות IT צריכים כל הזמן לבחור בין תחזוקה של מערכות מדורות קודמים לבין השקעה במוצרים ובשירותים חדשים. בקורס הזה נבחן את האתגרים הנובעים משימוש בתשתית IT מיושנת, ואיך בעלי עסקים יכולים לבצע מודרניזציה של תשתיות בעזרת טכנולוגיית ענן. הקורס מתחיל בהבנה מעמיקה של אפשרויות המחשוב השונות הזמינות בענן ופירוט היתרונות של כל אחת מהאפשרויות. לאחר מכן נבחן את האפשרויות למודרניזציה של האפליקציות ושל ממשקי API (ממשק תכנות יישומים). בקורס מתוארים גם מגוון פתרונות של Google Cloud שיכולים לשפר את תהליך פיתוח המערכות וניהולן בעסקים שונים, כמו Compute Engine, App Engine ו-Apigee.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
טכנולוגיית הענן לבדה מספקת לעסק חלק קטן בלבד מהערך האמיתי שלה. כשהיא משולבת עם נתונים בנפח רב מאוד, נוצרת העוצמה שמאפשרת להפיק ערך וליצור חוויות חדשות ללקוחות. במסגרת הקורס הזה תלמדו מהם נתונים, איך השתמשו בהם בעבר בחברות לצורך קבלת החלטות ולמה הם קריטיים כל כך ללמידה חישובית. בנוסף, בקורס הזה יוצגו ללומדים מושגים טכניים כמו נתונים מובְנים ולא מובְנים, מסד נתונים, מחסן נתונים (data warehouse) ואגמי נתונים (data lakes). בהמשך, הקורס יעסוק במוצרי Google Cloud הנפוצים ביותר בתחום הנתונים, ובמוצרים כאלה ששיעור השימוש בהם גדל במהירות הרבה ביותר.
מהי טכנולוגיית ענן ומהו מדע הנתונים? וחשוב יותר, איך הם יכולים לעזור לכם, לצוות שלכם ולעסק שלכם? קורס המבוא הזה בנושא טרנספורמציה דיגיטלית מתאים למי שרוצה ללמוד על טכנולוגיית הענן כדי להתמקצע ולהצטיין בעבודתו וכדי לעזור בפיתוח העתיד של העסק. בקורס יוגדרו מונחי יסוד כגון הענן, נתונים וטרנספורמציה דיגיטלית. בנוסף, נבחן דוגמאות של חברות מרחבי העולם שמשתמשות בטכנולוגיית הענן כדי לבצע טרנספורמציה בעסק. הקורס כולל סקירה של סוגי ההזדמנויות שיש לחברות ושל האתגרים הנפוצים שחברות מתמודדות איתם במהלך טרנספורמציה דיגיטלית. הקורס גם מדגים איך עמודי התווך של פתרונות Google Cloud יכולים לעזור בתהליך. חשוב לומר: טרנספורמציה דיגיטלית לא קשורה רק לשימוש בטכנולוגיות חדשות. כדי הטרנספורמציה תהיה מלאה, ארגונים צריכים גם ליישם חדשנות ולפתח דפוס חשיבה שמקדם חדשנות בכל התחומים והצוותים. השיטות המומלצות המתוארות בקורס יעזרו לכם להשיג את המטרה הזו.