Ian Ferguson
Participante desde 2023
Liga Ouro
7680 pontos
Participante desde 2023
Conclua o selo de habilidade intermediário Como criar infraestrutura com o Terraform no Google Cloud para mostrar que você sabe: usar os princípios de infraestrutura como código (IaC, na sigla em inglês) no Terraform, provisionar e gerenciar recursos do Google Cloud usando configurações do Terraform, gerenciamento de estado eficaz (local e remoto) e modularização do código do Terraform para reutilização e organização.
Neste curso, o usuário experiente do Google Cloud vai aprender a descrever e lançar recursos de nuvem com o Terraform, uma ferramenta de código aberto que transforma APIs em arquivos de configuração declarativos, que podem ser compartilhados entre os membros da equipe, tratados como código, editados, revisados e versionados. Nestes laboratórios práticos, você vai trabalhar com modelos de exemplo e aprenderá a lançar uma variedade de configurações, desde servidores simples até aplicativos com balanceamento de carga completo.
Conclua o selo de habilidade intermediário Implementar fluxos de trabalho de DevOps no Google Cloud para mostrar que você sabe: criar repositórios Git com o Cloud Source Repositories; lançar, gerenciar e escalonar implantações no Google Kubernetes Engine (GKE); e arquitetar pipelines de CI/CD que automatizam criações e implantações de imagens de contêiner no GKE. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como reconhecimento da sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.