加入 登录

在 Google Cloud 控制台中运用您的技能

Venu Kandagatla

成为会员时间:2021

青铜联赛

21810 积分
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Apr 27, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned Apr 27, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Apr 25, 2024 EDT
Launching into Machine Learning Earned Apr 24, 2024 EDT
Google Cloud 上的 AI 和机器学习简介 Earned Apr 17, 2024 EDT
适用于生成式 AI 的机器学习运维 (MLOps) Earned Apr 17, 2024 EDT
面向开发者的 Responsible AI:可解释性和透明度 Earned Apr 17, 2024 EDT
面向开发者的 Responsible AI:公平性与偏见 Earned Apr 17, 2024 EDT
使用多模态 Gemini 和多模态 RAG 检查富文档 Earned Apr 16, 2024 EDT
矢量搜索和嵌入 Earned Apr 12, 2024 EDT
Vertex AI Studio 简介 Earned Apr 12, 2024 EDT
创建图片标注模型 Earned Apr 12, 2024 EDT
Transformer 模型和 BERT 模型 Earned Apr 12, 2024 EDT
编码器-解码器架构 Earned Mar 22, 2024 EDT
注意力机制 Earned Feb 9, 2024 EST
图像生成简介 Earned Feb 8, 2024 EST
Generative AI Fundamentals - 简体中文 Earned Feb 8, 2024 EST
负责任的 AI 简介 Earned Feb 8, 2024 EST
大型语言模型简介 Earned Feb 8, 2024 EST
生成式 AI 简介 Earned Feb 7, 2024 EST
Google Cloud 基础知识:核心基础设施 Earned Mar 29, 2022 EDT
Google Cloud Essentials Earned Mar 2, 2022 EST

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。

了解详情

本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。

了解详情

本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。

了解详情

本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。

了解详情

完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度; 您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

在本次课程中,探索 AI 赋能的搜索技术、工具和应用。学习利用向量嵌入的语义搜索、融合语义和关键字的混合搜索方法,以及检索增强生成 (RAG) 技术,以打造基于事实的 AI 智能体,尽可能减少 AI 幻觉。获取 Vertex AI Vector Search 实战经验,打造您自己的智能搜索引擎。

了解详情

本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。

了解详情

本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。

了解详情

本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。

了解详情

本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。

了解详情

本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。

了解详情

本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。

了解详情

完成 Introduction to Generative AI、Introduction to Large Language Models 和 Introduction to Responsible AI 三门课程,赢取技能徽章。通过最终测验,即表明您理解了生成式 AI 的基本概念。 技能徽章是由 Google Cloud 颁发的数字徽章,旨在认可您对 Google Cloud 产品与服务的了解程度。公开您的个人资料并将技能徽章添加到您的社交媒体个人资料中,以此来分享您获得的成就。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情

“Google Cloud 基础知识:核心基础设施”介绍在使用 Google Cloud 时会遇到的重要概念和术语。本课程通过视频和实操实验来介绍并比较 Google Cloud 的多种计算和存储服务,并提供重要的资源和政策管理工具。

了解详情

在此入门级挑战任务中,您可以使用 Google Cloud Platform 的基本工具和服务,开展真枪实弹的操作实训。“GCP 基本功能”是我们为 Google Cloud 学员推荐的第一项挑战任务。云知识储备微乎其微甚至零基础?不用担心!这项挑战任务会为您提供真枪实弹的实操经验,助您快速上手 GCP 项目。无论是要编写 Cloud Shell 命令还是部署您的第一台虚拟机,亦或是通过负载平衡机制或在 Kubernetes Engine 上运行应用,都可以通过“GCP 基本功能”了解该平台的基本功能之精要。点此观看 1 分钟视频,了解每个实验涉及的主要概念。

了解详情