Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

Margarita Lacuaña

Miembro desde 2022

Liga de Diamantes

10917 puntos
Trabaja con Notebooks en Vertex AI Earned sep 26, 2025 EDT
Introducción a la IA y el aprendizaje automático en Google Cloud Earned sep 26, 2025 EDT
Guía de estudio para obtener la certificación de Ingeniero profesional de aprendizaje automático Earned sep 12, 2025 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned mar 6, 2025 EST
Creación de sistemas de analíticas en tiempo real resilientes en Google Cloud Earned mar 6, 2025 EST
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned feb 13, 2025 EST
Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud Earned ene 3, 2024 EST

Este curso es una introducción a Notebooks de Vertex AI, que son entornos basados en notebooks de Jupyter que proporcionan una plataforma unificada para todo el flujo de trabajo de aprendizaje automático, desde la preparación de los datos hasta la implementación y supervisión de los modelos. Se abordan los siguientes temas: (1) Los diferentes tipos de Notebooks de Vertex AI y sus funciones y (2) cómo crear y administrar Notebooks de Vertex AI.

Más información

En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.

Más información

Este curso ayuda a los participantes a crear un plan de estudios para el examen de certificación de PMLE (Professional Machine Learning Engineer). Los estudiantes conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Los cursos de Google Cloud Computing Foundations están destinados a personas que tienen un poco o nada de noción previa o experiencia sobre computación en la nube. Brindan una descripción general de los conceptos centrales básicos de la nube, los macrodatos y el aprendizaje automático, y explican dónde y cómo resulta adecuado utilizar Google Cloud. Cuando finalicen la serie de cursos, los alumnos podrán hablar con claridad sobre estos conceptos y demostrar sus habilidades prácticas. Los cursos deben completarse en el siguiente orden: 1. Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube 2. Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud 3. Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud 4. Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud Este tercer curso aborda la automatización y las herramientas de administración de la nube…

Más información