soh eunice
メンバー加入日: 2018
ブロンズリーグ
800 ポイント
メンバー加入日: 2018
データ ウェアハウスの構築または最適化を検討している場合は、BigQuery を使ったデータの抽出、変換、Google Cloud への読み込みに関するおすすめの方法を学びます。この一連のインタラクティブなラボでは、各種の大規模な BigQuery 一般公開データセットを使って独自のデータ ウェアハウスを作成、最適化します。BigQuery は、Google が低料金で提供する NoOps のフルマネージド分析データベースです。インフラストラクチャを所有して管理したり、データベース管理者を配置したりすることなく、テラバイト単位の大規模なデータでクエリを実行できます。また、SQL が採用されており、従量課金制モデルでご利用いただけます。このような特徴を活かし、お客様は有用な情報を得るためのデータ分析に専念できます。
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this quest, you will learn about Google Cloud’s IoT Core service and its integration with other services like GCS, Dataprep, Stackdriver and Firestore. The labs in this quest use simulator code to mimic IOT devices and the learning here should empower you to implement the same streaming pipeline with real world IoT devices.
Cloud Healthcare API bridges the gap between care systems and applications built on Google Cloud. By supporting standards-based data formats and protocols of existing healthcare technologies, Cloud Healthcare API connects your data to advanced Google Cloud capabilities, including streaming data processing with Cloud Dataflow, scalable analytics with BigQuery, and machine learning with Cloud Machine Learning Engine. In this Quest you will use the Cloud Healthcare API to ingest and process data in the industry standard FHIR, HL7v2 and DICOM formats, train a TensorFlow model for prediction with FHIR data, and also gain practice with de-identification of datasets.
大規模なコンピューティング能力を使用してパターンを認識し、 画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです 。 Google Cloud Platform は、 API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供します。 こうした機能とさまざまな API を備えた GCP のツールを使えば、 ほぼあらゆる ML ジョブに対応できます。 この入門コースでは、 画像処理に用いられる ML の実践的な演習を行います。 ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、 画像内のテキストを抽出、分析、翻訳したりすることができます。
ビッグデータ、機械学習、科学的データ。完璧な組み合わせといえます。このクエストは上級レベルであり、実際の科学的データセットを使用するユースケースに BigQuery、Dataproc、Tensorflow などの GCP サービスを当てはめ、実践的な演習を行います。「科学的データ処理」では、地震データの分析や衛星画像の集約といったタスクを実践し、ビッグデータと機械学習に関するスキルの強化を図ります。これにより、多岐にわたる科学的分野でさまざまな問題に取り組むことができるようになります。
Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。