Join Sign in

Apply your skills in Google Cloud console

Lesly Katherine Piñeros Cifuentes

Member since 2021

Silver League

11220 points
Create ML Models with BigQuery ML Earned מאי 15, 2024 EDT
Build and Deploy Machine Learning Solutions on Vertex AI Earned מאי 13, 2024 EDT
Prepare Data for ML APIs on Google Cloud Earned מאי 6, 2024 EDT
Baseline: Data, ML, AI Earned מאי 6, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned אפר 28, 2024 EDT
Introduction to AI and Machine Learning on Google Cloud Earned מרץ 4, 2024 EST
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned אוק 4, 2023 EDT
Cloud Hero BigQuery Skills Earned ספט 4, 2023 EDT
Cloud Hero Data Skills Earned אוג 27, 2023 EDT
Logging and Monitoring in Google Cloud Earned יול 14, 2023 EDT
Getting Started with Terraform for Google Cloud Earned יול 14, 2023 EDT
Recommendation Systems on Google Cloud Earned יול 12, 2023 EDT
Natural Language Processing on Google Cloud Earned יול 12, 2023 EDT
Machine Learning Operations (MLOps): Getting Started Earned יול 12, 2023 EDT
Production Machine Learning Systems Earned יול 4, 2023 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned יונ 17, 2023 EDT
Feature Engineering Earned מאי 30, 2023 EDT
Launching into Machine Learning Earned מאי 26, 2023 EDT
Machine Learning in the Enterprise Earned מאי 24, 2023 EDT
How Google Does Machine Learning Earned מאי 19, 2023 EDT
Understanding Google Cloud Security and Operations - בעברית Earned אפר 19, 2023 EDT
Infrastructure and Application Modernization with Google Cloud - בעברית Earned אפר 19, 2023 EDT
Innovating with Data and Google Cloud - בעברית Earned אפר 17, 2023 EDT
Digital Transformation with Google Cloud - בעברית Earned אפר 13, 2023 EDT
Google Cloud Platform Fundamentals: Core Infrastructure Earned מרץ 21, 2023 EDT
Preparing for Your Associate Cloud Engineer Journey Earned מרץ 2, 2023 EST
Develop Your Google Cloud Network Earned מרץ 2, 2023 EST
Getting Started with Google Kubernetes Engine Earned פבר 23, 2023 EST
Build Infrastructure with Terraform on Google Cloud Earned פבר 18, 2023 EST
Set Up an App Dev Environment on Google Cloud Earned פבר 15, 2023 EST
Essential Google Cloud Infrastructure: Core Services Earned פבר 11, 2023 EST
Elastic Google Cloud Infrastructure: Scaling and Automation Earned פבר 11, 2023 EST
Essential Google Cloud Infrastructure: Foundation Earned פבר 8, 2023 EST
Google Cloud Fundamentals: Core Infrastructure Earned פבר 2, 2023 EST
Prepare Data for Looker Dashboards and Reports Earned ינו 27, 2023 EST
[DEPRECATED] Data Engineering Earned נוב 8, 2021 EST
Google Cloud Essentials Earned נוב 8, 2021 EST
Prepare Data for ML APIs on Google Cloud Earned נוב 8, 2021 EST
Engineer Data for Predictive Modeling with BigQuery ML Earned נוב 5, 2021 EDT
Preparing for your Professional Data Engineer Journey Earned נוב 4, 2021 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned אוק 5, 2021 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned ספט 30, 2021 EDT
Building Batch Data Pipelines on Google Cloud Earned ספט 29, 2021 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned ספט 27, 2021 EDT
Implementing Cloud Load Balancing for Compute Engine Earned אוג 29, 2021 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned אוג 24, 2021 EDT

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Learn more

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Learn more

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

Big data, machine learning, and artificial intelligence are today’s hot computing topics, but these fields are quite specialized and introductory material is hard to come by. Fortunately, Google Cloud provides user-friendly services in these areas, and with this introductory-level quest, so you can take your first steps with tools like Big Query, Cloud Speech API and Video Intelligence. Want extra help? 1-minute videos walk you through key concepts for each lab.

Learn more

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Earn points by completing the labs accurately and receive bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

Welcome Gamers! Learn Google Cloud Dataprep, create a streaming pipeline using a Google-Provided Cloud Dataflow template, work with gcloud Command Line, all while having fun! Extract entities from a snippit of text using the Cloud Natural Language API You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Learn more

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Learn more

This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.

Learn more

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Learn more

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Learn more

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Learn more

הקורס בוחן ניהול עלויות, אבטחה ותפעול בענן. ראשית, מוסבר איך עסקים יכולים לרכוש שירותי IT מספק שירותי ענן ולשמר חלק מהתשתית שלהם או לבחור לא לשמר אותה בכלל. שנית, הקורס מתאר איך האחריות על אבטחת נתונים מתחלקת בין ספק שירותי הענן לעסק, וסוקר את אבטחת ההגנה לעומק (defense-in-depth) שמובנית ב-Google Cloud. לבסוף, הקורס מתייחס לכך שצוותי IT ומנהלי העסק צריכים לשנות את החשיבה על ניהול משאבי IT בענן, ונוגע באופן שבו כלי ניטור המשאבים ב-Google Cloud יכולים לסייע להם לשמור על שליטה וניראות בסביבת הענן שלהם.

Learn more

בארגונים מסורתיים רבים משתמשים במערכות ובאפליקציות מדורות קודמים, וקשה לבצע באמצעותן התאמה לעומס ופעולות מהירות הדרושות כדי לעמוד בציפיות מודרניות של לקוחות. מנהיגים עסקיים וקובעי מדיניות IT צריכים כל הזמן לבחור בין תחזוקה של מערכות מדורות קודמים לבין השקעה במוצרים ובשירותים חדשים. בקורס הזה נבחן את האתגרים הנובעים משימוש בתשתית IT מיושנת, ואיך בעלי עסקים יכולים לבצע מודרניזציה של תשתיות בעזרת טכנולוגיית ענן. הקורס מתחיל בהבנה מעמיקה של אפשרויות המחשוב השונות הזמינות בענן ופירוט היתרונות של כל אחת מהאפשרויות. לאחר מכן נבחן את האפשרויות למודרניזציה של האפליקציות ושל ממשקי API (ממשק תכנות יישומים). בקורס מתוארים גם מגוון פתרונות של Google Cloud שיכולים לשפר את תהליך פיתוח המערכות וניהולן בעסקים שונים, כמו Compute Engine,‏ App Engine ו-Apigee.

Learn more

טכנולוגיית הענן לבדה מספקת לעסק חלק קטן בלבד מהערך האמיתי שלה. כשהיא משולבת עם נתונים בנפח רב מאוד, נוצרת העוצמה שמאפשרת להפיק ערך וליצור חוויות חדשות ללקוחות. במסגרת הקורס הזה תלמדו מהם נתונים, איך השתמשו בהם בעבר בחברות לצורך קבלת החלטות ולמה הם קריטיים כל כך ללמידה חישובית. בנוסף, בקורס הזה יוצגו ללומדים מושגים טכניים כמו נתונים מובְנים ולא מובְנים, מסד נתונים, מחסן נתונים (data warehouse) ואגמי נתונים (data lakes). בהמשך, הקורס יעסוק במוצרי Google Cloud הנפוצים ביותר בתחום הנתונים, ובמוצרים כאלה ששיעור השימוש בהם גדל במהירות הרבה ביותר.

Learn more

מהי טכנולוגיית ענן ומהו מדע הנתונים? וחשוב יותר, איך הם יכולים לעזור לכם, לצוות שלכם ולעסק שלכם? קורס המבוא הזה בנושא טרנספורמציה דיגיטלית מתאים למי שרוצה ללמוד על טכנולוגיית הענן כדי להתמקצע ולהצטיין בעבודתו וכדי לעזור בפיתוח העתיד של העסק. בקורס יוגדרו מונחי יסוד כגון הענן, נתונים וטרנספורמציה דיגיטלית. בנוסף, נבחן דוגמאות של חברות מרחבי העולם שמשתמשות בטכנולוגיית הענן כדי לבצע טרנספורמציה בעסק. הקורס כולל סקירה של סוגי ההזדמנויות שיש לחברות ושל האתגרים הנפוצים שחברות מתמודדות איתם במהלך טרנספורמציה דיגיטלית. הקורס גם מדגים איך עמודי התווך של פתרונות Google Cloud יכולים לעזור בתהליך. חשוב לומר: טרנספורמציה דיגיטלית לא קשורה רק לשימוש בטכנולוגיות חדשות. כדי הטרנספורמציה תהיה מלאה, ארגונים צריכים גם ליישם חדשנות ולפתח דפוס חשיבה שמקדם חדשנות בכל התחומים והצוותים. השיטות המומלצות המתוארות בקורס יעזרו לכם להשיג את המטרה הזו.

Learn more

This content is deprecated. Please see the latest version of the course, here.

Learn more

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

Learn more

Earn a skill badge by completing the Develop your Google Cloud Network skill badge course, where you learn multiple ways to deploy and monitor applications including how to: explore IAM roles and add/remove project access, create VPC networks, deploy and monitor Compute Engine VMs, write SQL queries, deploy and monitor VMs in Compute Engine, and deploy applications using Kubernetes with multiple deployment approaches.

Learn more

Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.

Learn more

Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.

Learn more

Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.

Learn more

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.

Learn more

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.

Learn more

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

Learn more

Complete the introductory Prepare Data for Looker Dashboards and Reports skill badge to demonstrate skills in the following: filtering, sorting, and pivoting data; merging results from different Looker Explores; and using functions and operators to build Looker dashboards and reports for data analysis and visualization. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.

Learn more

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Learn more

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Learn more

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Learn more

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Learn more

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Learn more

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Learn more

Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more