参加 ログイン

Google Cloud コンソールでスキルを試す

Abucay Edward Fitz

メンバー加入日: 2024

ゴールドリーグ

47350 ポイント
Data Management and Storage in the Cloud Earned 8月 11, 2024 EDT
アプリケーション開発者向けの Gemini Earned 8月 8, 2024 EDT
Google Cloud での Kubernetes アプリケーションのデプロイ Earned 8月 8, 2024 EDT
Put It All Together: Prepare for a Cloud Data Analyst Job Earned 8月 6, 2024 EDT
Monitor and Manage Google Cloud Resources Earned 8月 6, 2024 EDT
Google Cloud への CI/CD パイプラインの実装 Earned 8月 5, 2024 EDT
Pub/Sub を使ってみる Earned 8月 3, 2024 EDT
Google Cloud におけるデータの保存、処理、管理 - コンソール Earned 8月 2, 2024 EDT
Get Started with Cloud Storage Earned 8月 2, 2024 EDT
Vertex AI の Gemini API で生成 AI を使ってみる Earned 7月 31, 2024 EDT
Introduction to Data Analytics in Google Cloud Earned 7月 31, 2024 EDT
Google Cloud コンピューティングの基礎 Earned 7月 30, 2024 EDT
Gemini と Streamlit を使用した生成 AI アプリの開発 Earned 7月 29, 2024 EDT
DEPRECATED Build LangChain Applications using Vertex AI Earned 7月 27, 2024 EDT
安全な Google Cloud ネットワークの構築 Earned 7月 26, 2024 EDT
Google Cloud の ML API 用にデータを準備 Earned 7月 25, 2024 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 7月 25, 2024 EDT
Compute Engine でのロード バランシングの実装 Earned 7月 25, 2024 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned 7月 25, 2024 EDT
[DEPRECATED] - Google Cloud Computing Foundations: Networking and Security in Google Cloud 日本語版 Earned 7月 24, 2024 EDT
Google Cloud における Terraform を使用したインフラストラクチャの構築 Earned 7月 24, 2024 EDT
[DEPRECATED] Google Cloud Computing Foundations: Infrastructure in Google Cloud 日本語板 Earned 7月 23, 2024 EDT
[DEPRECATED]-Google Cloud Computing Foundations: Cloud Computing Fundamentals - 日本語版 Earned 7月 23, 2024 EDT
Gemini によるマルチモダリティとマルチモーダル RAG を使用したリッチ ドキュメントの検査 Earned 7月 22, 2024 EDT
ベクトル検索とエンベディング Earned 7月 22, 2024 EDT
開発者向けの責任ある AI: 解釈可能性と透明性 Earned 7月 22, 2024 EDT
発者向けの責任ある AI: 公平性とバイアス Earned 7月 18, 2024 EDT
生成 AI のための ML オペレーション(MLOps) Earned 7月 17, 2024 EDT
画像キャプション モデルの作成 Earned 7月 17, 2024 EDT
Vertex AI Studio の概要 Earned 7月 17, 2024 EDT
Transformer モデルと BERT モデル Earned 7月 17, 2024 EDT
Encoder-Decoder アーキテクチャ Earned 7月 17, 2024 EDT
アテンション機構 Earned 7月 17, 2024 EDT
画像生成の概要 Earned 7月 17, 2024 EDT
Create and Manage Bigtable Instances Earned 7月 15, 2024 EDT
Google Cloud での DevOps ワークフローの実装 Earned 7月 14, 2024 EDT
Gemini と Imagen を使用した実際の AI アプリケーションの構築 Earned 7月 14, 2024 EDT
Cloud Run Functions: 3 Ways Earned 7月 14, 2024 EDT
Google Cloud での Kubernetes の管理 Earned 7月 13, 2024 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 7月 13, 2024 EDT
Vertex AI におけるプロンプト設計 Earned 7月 13, 2024 EDT
責任ある AI の概要 Earned 7月 8, 2024 EDT
大規模言語モデルの概要 Earned 7月 8, 2024 EDT
生成 AI の概要 Earned 7月 8, 2024 EDT

This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーター、Gemini が、デベロッパーのアプリケーション構築にどのように役立つかについて学びます。コードの説明、Google Cloud サービスの提案、アプリケーションのコード生成を Gemini に指示する方法について学びます。ハンズオンラボを使用して、Gemini でアプリケーション開発ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。

詳細

This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.

詳細

Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.

詳細

Google Cloud への CI / CD パイプラインの実装」コースを修了して中級のスキルバッジを獲得しましょう。 Artifact Registry、Cloud Build、Cloud Deploy の使用方法を学習できます。Cloud コンソール、Google Cloud CLI、Cloud Run、GKE を使用します 。このコースでは、継続的インテグレーション(CI) パイプラインの構築、アーティファクトの保存と保護、脆弱性のスキャン、承認されたリリースの有効性の証明 の方法を説明します。さらに、アプリケーションを GKE と Cloud Run の両方にデプロイするという実践的な経験を積むことができます。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、スキルバッジのハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

「Pub/Sub を使ってみる」クエストを修了すると スキルバッジを獲得できます。 このクエストでは、Cloud コンソールでの Pub/Sub の使用方法、Cloud Scheduler ジョブで作業を効率化する方法、 大量のイベント取り込みで Pub/Sub Lite を使用してコストを 削減できるタイミングについて学習します。

詳細

Cloud Storage、Cloud Functions、Cloud Pub/Sub はいずれも データの保存、処理、管理に使用できる Google Cloud プラットフォーム サービスです。この 3 種の サービスを併用してさまざまなデータドリブン アプリケーションを作成できます。この スキルバッジでは、Cloud Storage を使用して画像を保存し、Cloud Functions を使用して 画像を処理し、Cloud Pub/Sub を使用して画像を別のアプリケーションに送信します。

詳細

Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.

詳細

「Vertex AI の Gemini API で生成 AI を使ってみる」の中級スキルバッジを獲得すると、 テキスト生成、画像と動画の分析によるコンテンツ作成の強化、Gemini API 内での関数呼び出し手法の適用といったスキルを実証できます。 Gemini の高度な手法の活用、マルチモーダル コンテンツの生成、AI を活用したプロジェクトの機能拡張を行う方法を学びましょう。

詳細

This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.

詳細

「Google Cloud コンピューティングの基礎」クエストを修了してスキルバッジを獲得しましょう。 クエストでは、Compute Engine を使用して、仮想マシン(VM)、永続ディスク、ウェブサーバーを操作する方法を学習します。 スキルバッジは、 Google Cloud のプロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ クエストと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

「Gemini と Streamlit を使用した生成 AI アプリの開発」の中級スキルバッジを獲得すると、 テキストの生成、Python SDK と Gemini API を使用した関数呼び出し、Cloud Run を使用した Streamlit アプリケーションのデプロイといったスキルを実証できます。 ここでは、Gemini にテキスト生成のプロンプトを与えるさまざまな方法を確認し、Cloud Shell を使用して Streamlit アプリケーションのテストとイテレーションを行い、Cloud Run にデプロイされる Docker コンテナとしてパッケージ化します。

詳細

Complete the introductory Build LangChain Applications using Vertex AI skill badge to learn how to build Generative AI applications using LangChain and the Retrieval Augmented Generation (RAG) technique for text-based content, powered by Vertex AI's advanced Generative AI capabilities. Discover how to integrate powerful large language models (LLMs) with search and retrieval workflows, boosting the accuracy and relevance of your generated content. Earn a Google Cloud skill badge and showcase your expertise by completing the course and its final assessment challenge lab.

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 3 番目のコースでは、安全なネットワークを構築する方法、 およびクラウドの自動化と管理ツールについて説明します。

詳細

「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 2 番目のコースでは、ストレージ モデルの実装、さまざまなアプリケーション マネージド サービス オプション、GoogleCloudでのセキュリティ管理について説明します。

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの知識または経験がほとんどあるいはまったくない受講者に、 クラウドの基礎、ビッグデータ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのように役立つかについて詳しく説明します。 最初にクラウド コンピューティングの概要を確認してから、クラウド·コンピューティング·インフラストラクチャと、ビッグデータおよび機械学習の 2 つの分野を詳しく見ていきます。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、機械学習に関連するコンセプトを明確に説明したり、 いくつかの実践的スキルを実証したりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。

詳細

Gemini によるマルチモダリティとマルチモーダル RAG を使用したリッチ ドキュメントの検査 スキルバッジを獲得できる中級コースを修了すると、次のスキルを実証できます。 Gemini を使用したマルチモダリティにより、マルチモーダル プロンプトを使用してテキストと視覚データから情報を抽出し、動画の説明を生成して、 動画の範囲を超えた追加情報を取得する。Gemini を使用したマルチモーダル検索拡張生成(RAG)により、テキストと画像を含むドキュメントのメタデータを作成し、関連するすべてのテキスト チャンクの取得して、 引用を出力する。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、ネットワークで共有しましょう。

詳細

このコースでは、AI を活用した検索テクノロジー、ツール、アプリケーションについて学びます。ベクトル エンベディングを利用するセマンティック検索、セマンティック アプローチとキーワード アプローチを組み合わせたハイブリッド検索、グラウンディング対応 AI エージェントとして AI のハルシネーションを最小限に抑える検索拡張生成(RAG)をご紹介します。Vertex AI Vector Search を実践的な経験を積んで、インテリジェントな検索エンジンを構築しましょう。

詳細

このコースでは、AI の解釈可能性と透明性のコンセプトを紹介します。デベロッパーとエンジニアにとって AI の透明性が重要であることについて説明します。データと AI モデルの両方で解釈可能性と透明性を達成できる実践的な方法とツールを検証します。

詳細

このコースでは、責任ある AI および AI に関する原則のコンセプトを紹介します。AI / ML の実践における公平性とバイアスを特定し、バイアスを軽減するための実践的な手法を取り扱います。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して責任ある AI のベスト プラクティスを実装するための実践的な方法とツールを検証します。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.

詳細

Google Cloud での DevOps ワークフローの実装 コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Cloud Source Repositories を使用した Git リポジトリの作成、 Google Kubernetes Engine(GKE)上でのデプロイのリリース、管理、スケール、 コンテナ イメージのビルドと GKE へのデプロイを自動化する CI / CD パイプラインの設計といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

「Gemini と Imagen を使用した実際の AI アプリケーションの構築」入門スキルバッジを取得して、画像認識、自然言語処理、 Google の強力な Gemini モデルと Imagen モデルを使用した画像生成、Vertex AI プラットフォームへのアプリケーションのデプロイなどのスキルを証明しましょう。

詳細

Earn a Introductory skill badge by completing the Cloud Run functions: 3 Ways course, where you learn how to use Cloud Run functions through the Google Cloud console and on the command line.

詳細

Google Cloud での Kubernetes の管理」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 kubectl を活用したデプロイの管理、 Google Kubernetes Engine(GKE)でのアプリケーションのモニタリングとデバッグ、継続的デリバリーの手法におけるスキルを実証できます。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細