完成「在 Vertex AI 使用 Gemini API 探索生成式 AI」技能徽章中階課程,即可證明自己具備下列技能: 可運用 Gemini API 生成文字、分析圖片和影片來強化內容創作能力,還能使用函式呼叫技巧。 本課程將帶您瞭解如何善用進階的 Gemini 技術、使用多模態內容生成功能,並提升 AI 專案的潛力。
Complete the intermediate Secure Software Delivery skill badge to demonstrate your proficiency in proactively integrating security into the software development lifecycle (SDLC) with DevSecOps principles. You'll learn how to utilize Google Kubernetes Engine (GKE) and Cloud Run for secure container image deployment, implement automated vulnerability scanning to proactively identify risks, and streamline application development with Artifact Registry while maintaining a focus on security. Additionally, you'll gain skills in integrating Cloud Build for robust development processes and implementing Admission Control Policies for fine-grained control over your environment.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
本課程將示範如何在 BigQuery 運用 AI/機器學行模型,以執行生成式 AI 任務。透過涉及顧客關係管理的應用實例,您將瞭解運用 Gemini 模型解決業務問題的工作流程。為了便於理解,本課程還提供了採用 SQL 查詢和 Python 筆記本的程式設計解決方案,指導您逐步操作。
本課程涵蓋「AI 隱私權」和「AI 安全性」這兩個重要主題。我們將介紹實用的方法和工具,協助您運用 Google Cloud 產品和開放原始碼工具,導入 AI 隱私權和安全性的建議做法。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助分析客戶資料及預測產品銷售情形。您也會學習如何在 BigQuery 中使用客戶資料識別、分類及開發新客戶。透過使用實作研究室,您可以體驗 Gemini 如何改良資料分析和機器學習工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程會說明 Gemini in BigQuery,這是一套由 AI 輔助的功能,可協助「從資料到 AI」的工作流程。這些功能包含資料探索和準備、程式碼生成和疑難排解,以及工作流程探索和視覺化。本課程將透過概念解說、應用實例和實作實驗室,協助資料從業人員提升工作效率,並加速開發 pipeline。
完成 使用 Gemini 和 Streamlit 開發生成式 AI 應用程式 技能徽章中階課程,即可證明您具備下列技能: 生成文字、透過 Python SDK 和 Gemini API 呼叫函式,以及運用 Cloud Run 部署 Streamlit 應用程式。 您將瞭解如何以不同方式透過提示請 Gemini 生成文字、使用 Cloud Shell 測試及疊代 Streamlit 應用程式,隨後封裝成 Docker 容器並在 Cloud Run 中部署。
完成 使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 技能徽章中階課程,即可證明您具備下列技能: 透過 Gemini 多模態功能,使用多模態提示從文字和影像資料擷取資訊、生成影片說明,以及擷取影片以外的額外資訊; 透過 Gemini 的多模態檢索增強生成 (RAG) 功能,為含有文字和圖片的文件建構中繼資料、取得所有相關文字分塊,以及顯示引用資料。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本課程及結業評量挑戰研究室,即可取得技能徽章,並與親友分享。
完成「Cloud Speech API:3 種應用」課程,瞭解如何使用語音相關 API 工具合成及轉錄語音, 即可獲得入門級技能徽章。
完成運用 BigQuery 導入多模態向量搜尋技能徽章中階課程, 即可證明自己具備下列技能:使用 Gemini in BigQuery 生成 SQL 程式碼並偵錯、執行情緒分析、 總結文字重點並找出關鍵字、生成嵌入項目、建立檢索增強生成 (RAG) pipeline, 以及導入多模態向量搜尋。 技能徽章是 Google Cloud 獨家核發的數位徽章, 用於肯定您對 Google Cloud 產品和服務的精通程度。 獲得技能徽章代表您已通過測驗,能在互動式實作環境應用相關知識。 完成這個技能徽章課程,以及挑戰實驗室的結業評量之後, 即可取得數位徽章並與他人分享。
完成運用 Gemini 分析多模態資料並推論技能徽章中階課程,即可證明自己具備下列技能:使用 Gemini 2.0 Flash 分析文字、圖像、音訊 (以樂譜呈現) 和影片資料;以及依據這類複合型資訊,推導出結論及擷取洞察結果。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 這個課程和結業評量挑戰實驗室之後,即可取得技能徽章 並與他人分享。
完成強化 Gemini 模型功能技能徽章中階課程,即可證明自己具備下列技能:運用 Gemini 模型的進階功能 (包括生成及執行程式碼、建立基準、生成受控內容、建立合成資料等),打造更強大且精密的 AI 應用程式。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 這個課程和結業評量挑戰實驗室之後,即可取得技能徽章 並與他人分享。
完成「Gemini 和 Imagen 實務應用:建構 AI 應用程式」技能徽章入門課程,即可證明您具備下列技能:圖片辨識、自然語言處理、 使用 Google 強大的 Gemini 和 Imagen 模型生成圖片,以及在 Vertex AI 平台上部署應用程式。
完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。
完成 使用 Firebase 開發無伺服器應用程式 技能徽章中階課程, 即可證明您具備下列技能:使用 Firebase 架構及建構無伺服器的網頁應用程式、 運用 Firestore 管理資料庫、使用 Cloud Build 自動部署內容, 以及將 Google 助理功能整合至應用程式。
本入門課程有別於其他課程。 透過這些實驗室,IT 專業人員將有機會實際練習, 熟悉出現在 Google Cloud 助理雲端工程師認證中的主題和服務。本課程包含多個專門的實驗室,從 IAM、網路建立 到 Kubernetes Engine 部署作業, 可全面驗收您的 Google Cloud 知識。請注意,雖然進行這些 實驗室可提升您的技能和能力,但仍建議同時詳閱 測驗指南和其他可用的準備資源。
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
完成 在 Compute Engine 實作負載平衡功能 技能徽章入門課程,即可證明您具備下列技能: 編寫 gcloud 指令和使用 Cloud Shell、在 Compute Engine 建立及部署虛擬機器, 以及設定網路和 HTTP 負載平衡器。 「技能徽章」是 Google Cloud 核發的 獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個課程及挑戰研究室 最終評量,即可取得技能徽章並與親友分享。
完成「運用 BigQuery ML 建立機器學習模型」技能徽章中階課程,即可證明您具備下列技能: 可使用 BigQuery ML 建立及評估機器學習模型,並根據資料進行預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與他人分享。
完成「為 Looker 資訊主頁和報表準備資料」技能徽章入門課程, 即可證明您具備下列技能:可篩選、排序和 pivot 資料、合併不同的 Looker 探索結果, 還能使用函式和運算子建構 Looker 資訊主頁和報表,取得資料分析結果和圖表。
完成 從 BigQuery 資料取得深入分析結果 技能徽章入門課程,即可證明您具備下列技能: 撰寫 SQL 查詢、查詢公開資料表、將樣本資料載入 BigQuery、使用 BigQuery 的查詢驗證工具 排解常見語法錯誤,以及在 Looker Studio 中 透過連結 BigQuery 資料建立報表。