Inscreva-se Fazer login

Aplique suas habilidades no console do Google Cloud

Pablo Plaza

Participante desde 2022

Liga Prata

2000 pontos
Preparação para sua jornada da certificação Professional Data Engineer Earned Nov 21, 2022 EST
Preparar dados para APIs de ML no Google Cloud Earned Nov 2, 2022 EDT
Processamento de dados sem servidor com o Dataflow: fundamentos Earned Oct 26, 2022 EDT
Criar um data warehouse com o BigQuery Earned Oct 24, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Oct 19, 2022 EDT
BigQuery for Data Warehousing Earned Oct 16, 2022 EDT
Como criar sistemas de análise de streaming resilientes no Google Cloud Earned Oct 13, 2022 EDT
Como criar pipelines de dados em lote no Google Cloud Earned Oct 9, 2022 EDT
Como modernizar data lakes e data warehouses com o Google Cloud Earned Oct 2, 2022 EDT

Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.

Saiba mais

Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.

Saiba mais

Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.

Saiba mais

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

Quer criar ou otimizar um armazenamento de dados? Aprenda práticas recomendadas para extrair, transformar e carregar dados no Google Cloud com o BigQuery. Nesta série de laboratórios interativos, você vai criar e otimizar seu próprio armazenamento usando diversos conjuntos de dados públicos de grande escala do BigQuery. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura ou precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Com ele, você se concentra na análise dos dados para encontrar insights relevantes.

Saiba mais

O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.

Saiba mais

Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.

Saiba mais

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".

Saiba mais