Inscreva-se Fazer login

Aplique suas habilidades no console do Google Cloud

Daniel Gomez

Participante desde 2021

Liga Bronze

23640 pontos
Generative AI Fundamentals - Português Brasileiro Earned Jan 29, 2024 EST
Introdução à IA responsável Earned Jan 29, 2024 EST
Introdução aos modelos de linguagem grandes Earned Jan 29, 2024 EST
Introdução à análise de dados no Google Cloud Earned Jan 24, 2024 EST
Machine learning nas empresas Earned Jan 16, 2024 EST
Natural Language Processing on Google Cloud Earned Jan 3, 2024 EST
Introdução à IA generativa Earned Jan 2, 2024 EST
Criação de sistemas de machine learning de produção Earned Jan 2, 2024 EST
Engenharia de atributos Earned Dec 30, 2023 EST
Como criar, treinar e implantar modelos de ML com o Keras no Google Cloud Earned Dec 28, 2023 EST
Launching into Machine Learning - Português Brasileiro Earned Dec 28, 2023 EST
Operações de machine learning (MLOps): introdução Earned Dec 25, 2023 EST
Introdução à IA e ao machine learning no Google Cloud Earned Dec 24, 2023 EST

Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.

Saiba mais

Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.

Saiba mais

Neste curso para iniciantes, você vai aprender sobre o fluxo de trabalho de análise de dados no Google Cloud e sobre as ferramentas necessárias para explorar, analisar e visualizar dados. Também vamos falar sobre como compartilhar suas descobertas com partes interessadas. Com o auxílio de laboratórios práticos, aulas, testes, demonstrações e um estudo de caso, vamos aprender a transformar conjuntos de dados brutos em dados limpos para gerar visualizações e dashboards de alto impacto. Se você já trabalha com dados e quer ter sucesso no Google Cloud ou progredir na carreira, este curso vai ajudar você a começar. Qualquer pessoa que trabalha ou usa análise de dados de forma profissional pode se beneficiar com este curso.

Saiba mais

Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.

Saiba mais

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.

Saiba mais

Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.

Saiba mais

O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.

Saiba mais

Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.

Saiba mais

O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.

Saiba mais

Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.

Saiba mais

Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.

Saiba mais