Daniel Gomez
회원 가입일: 2021
브론즈 리그
23640포인트
회원 가입일: 2021
Introduction to Generative AI, Introduction to Large Language Models, Introduction to Responsible AI 과정을 완료하고 기술 배지를 획득하세요. 최종 퀴즈를 풀어보고 생성형 AI의 기본 개념을 제대로 이해했는지 확인해 보세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 지식을 숙지한 사람에게 Google Cloud에서 발급하는 디지털 배지입니다. 프로필을 공개하고 기술 배지를 소셜 미디어 프로필에 추가하여 공유하세요.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
초급 과정에서는 Google Cloud에서 데이터 분석 워크플로와 데이터를 탐색, 분석, 시각화하여 이해관계자와 결과물을 공유하는 데 활용할 수 있는 도구에 대해 학습합니다. 이 과정에서는 우수사례를 실무형 실습, 강의, 퀴즈/데모와 함께 활용해 원시 데이터 세트에서 데이터를 정리하여 효과적인 시각화 및 대시보드를 만드는 방법을 설명합니다. 이미 데이터를 활용하고 있고 Google Cloud를 효과적으로 활용하는 방법을 알고 싶거나 경력을 발전시키고 싶은 학습자라면 이 과정으로 학습을 시작해 보세요. 업무에서 데이터 분석을 수행하거나 활용하는 거의 모든 학습자에게 도움이 될 수 있습니다.
이 과정에서는 우수사례를 중심으로 ML 워크플로에 대한 실질적인 접근 방식을 취합니다. ML팀은 다양한 ML 비즈니스 요구사항과 사용 사례에 직면합니다. 팀에서는 데이터 관리 및 거버넌스에 필요한 도구를 이해하고 가장 효과적으로 데이터 전처리에 접근하는 방식을 파악해야 합니다. 두 가지 사용 사례를 위한 ML 모델을 빌드하는 세 가지 옵션이 팀에 제시됩니다. 이 과정에서는 목표를 달성하기 위해 AutoML, BigQuery ML 또는 커스텀 학습을 사용하는 이유를 설명합니다.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
이 과정에서는 프로덕션 환경에서 고성능 ML 시스템을 빌드하기 위한 구성요소와 권장사항을 자세히 살펴봅니다. 정적 학습, 동적 학습, 정적 추론, 동적 추론, 분산 TensorFlow, TPU 등 고성능 ML 시스템 빌드와 관련된 일반적인 고려사항을 다룹니다. 이 과정에서는 정확한 예측 능력 외에도 양질의 ML 시스템을 만드는 특성을 탐구하는 데 중점을 둡니다.
이 과정에서는 Vertex AI Feature Store 사용의 이점, ML 모델의 정확성을 개선하는 방법, 가장 유용한 특성을 만드는 데이터 열을 찾는 방법을 살펴봅니다. 이 과정에는 BigQuery ML, Keras, TensorFlow를 사용한 특성 추출에 관한 콘텐츠와 실습도 포함되어 있습니다.
이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.
이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.
이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.
이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.