Jai Sharma
Miembro desde 2022
Liga de Oro
9905 puntos
Miembro desde 2022
Este es el quinto de cinco cursos del Certificado de Google Cloud Data Analytics. En este curso, combinarás y aplicarás los conocimientos y las habilidades fundamentales que se enseñaron del curso 1 al 4 en un proyecto final práctico que se enfoca en el proyecto del ciclo de vida completo de los datos. Practicarás usando herramientas basadas en la nube para adquirir, almacenar, procesar, analizar, visualizar y comunicar estadísticas de datos de manera eficaz. Al final del curso, habrás completado un proyecto en el que demuestras tu dominio en cuanto a estructurar datos de múltiples fuentes con eficacia, presentar soluciones a una variedad de partes interesadas y visualizar estadísticas de datos usando software basado en la nube. También te prepararás actualizando tu currículum y practicando técnicas de entrevista para postularte a trabajos y asistir a entrevistas.
Este es el primero de cinco cursos en el Certificado de Google Cloud Data Analytics. En este curso, aprenderás cómo se define el campo de análisis de datos en la nube y a describir los roles y responsabilidades de un analista de datos en la nube, que se relacionan con la adquisición, el almacenamiento, el procesamiento y la visualización de los datos. Explorarás la arquitectura de las herramientas basadas en Google Cloud (por ejemplo, BigQuery y Cloud Storage) y cómo se utilizan para estructurar y presentar datos, y realizar informes sobre ellos de manera eficaz.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.