jun koh
Participante desde 2020
Liga Prata
3600 pontos
Participante desde 2020
Esta é a primeira de duas Quests de laboratórios práticos e é derivada dos exercícios do livro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado pela O'Reilly Media, Inc. Nesta primeira Quest, que aborda o capítulo 8, você poderá praticar todos os aspectos de ingestão, preparação, processamento, consulta, exploração e visualização de conjuntos de dados usando as ferramentas e os serviços do Google Cloud Platform.
In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.
Não é novidade que o machine learning é um dos campos que mais crescem na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Nesta Quest de nível avançado, você terá experiência prática com as APIs de machine learning em laboratórios como estes: "Como implementar um bot de bate-papo com IA usando o Dialogflow" e "Detectar rótulos, rostos e pontos de referência em imagens com a API Cloud Vision".
Quer transformar seus dados de marketing em insights e criar painéis? Reúna todos os dados em um único lugar para fazer análises em grande escala e criar modelos. Use o BigQuery e aprenda a fazer consultas para gerar insights repetíveis, escalonáveis e valiosos sobre seus dados. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura nem precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Além disso, ele permite que você se concentre na análise dos dados para encontrar insights relevantes.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Mas esses são campos muito especializados, e é difícil encontrar materiais introdutórios sobre eles. Felizmente, o Google Cloud oferece serviços fáceis de usar nessas áreas, e com este curso de nível básico, você já pode começar sua jornada com ferramentas como o BigQuery, a API Cloud Speech e o Video Intelligence.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Quer criar ou otimizar um armazenamento de dados? Aprenda práticas recomendadas para extrair, transformar e carregar dados no Google Cloud com o BigQuery. Nesta série de laboratórios interativos, você vai criar e otimizar seu próprio armazenamento usando diversos conjuntos de dados públicos de grande escala do BigQuery. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura ou precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Com ele, você se concentra na análise dos dados para encontrar insights relevantes.
Data Catalog é um serviço de gerenciamento de metadados totalmente gerenciado e escalonável. Com ele, as organizações descobrem, compreendem e gerenciam rapidamente todos os dados. Nesta Quest, vamos começar com algo simples - você aprenderá como pesquisar e adicionar tags a recursos de dados e metadados usando o Data Catalog. Depois que você aprender a desenvolver seus próprios modelos de tags correlacionados a dados da tabela do BigQuery, mostraremos como criar conectores do MySQL, PostgreSQL e SQLServer para o Data Catalog.
Não é novidade que o machine learning é um dos campos que mais cresce na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning ao processamento de linguagem em laboratórios que permitem extrair entidades de textos e realizar análises sintáticas e de sentimento, além de usar a API Speech-to-Text para transcrição.
Quer criar modelos de ML em minutos em vez de horas usando apenas SQL? O BigQuery ML democratiza o machine learning ao permitir que analistas de dados criem, treinem, avaliem e façam previsões usando habilidades e ferramentas de SQL que eles já têm. Nesta série de laboratórios, você vai fazer alguns testes e saber quais são as características de um bom modelo.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Usar a capacidade de computação em grande escala para reconhecer padrões e "ler" imagens é uma das tecnologias fundamentais de IA, desde carros com condução automática até reconhecimento facial. O Google Cloud Platform oferece velocidade e precisão de nível internacional, com sistemas que podem ser usados ao chamar APIs. Com eles e várias outras APIs, o GCP tem praticamente uma ferramenta para cada job de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning em processamento de imagens com laboratórios que permitem rotular imagens, detectar rostos e pontos de referência, extrair, analisar e traduzir texto de imagens.