jun koh
Miembro desde 2020
Liga de Plata
3600 puntos
Miembro desde 2020
Esta es la primera de las dos Quests de labs prácticos derivada de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, editado por O'Reilly Media, Inc. En esta primera Quest, en el capítulo 8, tiene la oportunidad de practicar todos los aspectos de la transferencia, la preparación, el procesamiento, las consultas, la exploración y la visualización de los conjuntos de datos con las herramientas y los servicios de Google Cloud Platform.
In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.
¿Desea convertir sus datos de marketing en estadísticas y compilar paneles? Reúna todos sus datos en un solo lugar para lograr un análisis a gran escala y poder compilar modelos. Aprenda a consultar sus datos y utilice BigQuery para obtener información repetible, escalable y valiosa. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Los macrodatos, el aprendizaje automático y la Inteligencia Artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Por suerte, Google Cloud proporciona servicios fáciles de usar en estas áreas y, con este curso de nivel básico, puedes dar tus primeros pasos con herramientas como BigQuery, la API de Cloud Speech y Video Intelligence.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
¿Quiere optimizar o compilar su almacén de datos? Aprenda las prácticas recomendadas para extraer, transformar y cargar sus datos en Google Cloud con BigQuery. En esta serie de labs interactivos, creará y optimizará su almacén de datos con una variedad de conjuntos de datos públicos de BigQuery a gran escala. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
Data Catalog es un servicio de administración de metadatos completamente administrado y escalable que permite a las organizaciones descubrir, comprender y administrar todos sus datos con rapidez.En esta Quest, comenzará por aprender actividades básicas como buscar y etiquetar recursos de datos y metadatos con Data Catalog. Una vez que aprenda a crear sus propias plantillas de etiquetado que se mapeen a datos de tablas de BigQuery, descubrirá cómo incorporar MySQL, PostgreSQL y SQL Server a conectores de Data Catalog.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en el ámbito de la tecnología, y Google Cloud desempeñó un papel decisivo para impulsar su desarrollo. Con su gran cantidad de APIs, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica al procesamiento del lenguaje en labs que te permitirán extraer entidades de un texto, realizar análisis sintácticos y de opiniones, y usar la API de Speech-to-Text para la transcripción.
¿Quieres compilar modelos de AA en minutos en lugar de horas utilizando únicamente SQL? BigQuery ML democratiza el aprendizaje automático, ya que permite que los analistas de datos creen, entrenen, evalúen y realicen predicciones con modelos de aprendizaje automático a través de herramientas y habilidades de SQL existentes. En esta serie de labs, experimentarás con diferentes tipos de modelos y aprenderás cuáles son las características de un buen modelo.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Usar potencia de procesamiento a gran escala para reconocer patrones y “leer” imágenes es una de las tecnologías fundamentales de la IA, que, por ejemplo, se usa en los vehículos autónomos y el reconocimiento facial. Google Cloud proporciona velocidad y precisión de primer nivel a través de sistemas que se pueden utilizar con solo llamar a las APIs. Con estas y muchas otras APIs, Google Cloud cuenta con herramientas para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica a procesamiento de imágenes en labs que te permitirán etiquetar imágenes, detectar rostros y puntos de referencia, y también extraer, analizar y traducir texto de las imágenes.