가입 로그인

Google Cloud 콘솔에서 기술 적용

Szymon Baczyński

회원 가입일: 2023

실버 리그

3210포인트
기준: 인프라 Earned 7월 18, 2023 EDT
GCP Essentials Earned 7월 18, 2023 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud - 한국어 Earned 7월 18, 2023 EDT
머신러닝 작업(MLOps): 시작하기 Earned 7월 6, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 6월 24, 2023 EDT

이 과정은 Google Cloud 기본 개념 과정 이상의 지식을 얻기 위해 실무형 실습을 찾는 초보 클라우드 개발자에게 도움이 됩니다. 실습을 통해 Cloud Storage와 Monitoring 및 Cloud Functions 등 기타 주요 애플리케이션 서비스를 자세히 살펴보며 실무 경험을 쌓게 됩니다. 모든 Google Cloud 이니셔티브에 적용할 수 있는 유용한 기술을 개발할 수 있습니다.

자세히 알아보기

가장 인기 있는 이 탐구 과정에서 Google Cloud를 처음으로 실습할 수 있습니다. Stackdriver 및 Kubernetes의 고급 개념으로 실습하여 VM 가동, 키 인프라 도구 구성과 같은 기본사항을 익혀 보세요.

자세히 알아보기

데이터 파이프라인의 두 가지 주요 구성요소는 데이터 레이크와 웨어하우스입니다. 이 과정에서는 스토리지 유형별 사용 사례를 살펴보고 Google Cloud에서 사용 가능한 데이터 레이크 및 웨어하우스 솔루션을 기술적으로 자세히 설명합니다. 또한 데이터 엔지니어의 역할, 성공적인 데이터 파이프라인이 비즈니스 운영에 가져오는 이점, 클라우드 환경에서 데이터 엔지니어링을 수행해야 하는 이유도 알아봅니다. 'Data Engineering on Google Cloud' 시리즈의 첫 번째 과정입니다. 이 과정을 완료한 후 Building Batch Data Pipelines on Google Cloud 과정에 등록하세요.

자세히 알아보기

이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기