Vishal Ramani
회원 가입일: 2022
다이아몬드 리그
26610포인트
회원 가입일: 2022
Google Cloud 네트워크 설정 과정을 완료하고 기술 배지를 획득하세요. 이 실습에서는 Google Cloud Platform에서 기본적인 네트워킹 작업을 수행하는 방법을 알아봅니다. 커스텀 네트워크를 만들고 서브넷 방화벽 규칙을 추가한 다음 VM을 만들고 VM이 서로 통신할 때의 지연 시간을 테스트합니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받을 수 있습니다.
중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요. 기술 배지 과정을 이수하면 실무형 실습과 챌린지 평가를 통해 특정 제품에 대한 실무 지식을 검증받을 수 있습니다. 과정을 완료하여 배지를 획득하거나 챌린지 실습으로 바로 넘어가 지금 배지를 획득하세요. 배지를 획득하면 자신의 숙련도를 증명하고 직업 프로필을 개선하며 궁극적으로는 더 나은 채용 기회를 얻을 수 있습니다. 프로필로 이동하여 획득한 배지를 추적하세요.
This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.
Google Kubernetes Engine 시작하기 과정에 오신 것을 환영합니다. 애플리케이션과 하드웨어 인프라 사이에 위치하는 소프트웨어 레이어인 Kubernetes에 관심이 있으시다면 잘 찾아오셨습니다. Google Kubernetes Engine을 사용하면 Kubernetes를 Google Cloud에서 관리형 서비스로 사용할 수 있습니다. 이 과정의 목표는 흔히 GKE로 불리는 Google Kubernetes Engine의 기본사항을 소개하고 Google Cloud에서 애플리케이션을 컨테이너화하고 실행하는 방법을 설명하는 것입니다. 이 과정에서는 먼저 Google Cloud에 대해 기본적인 사항을 소개한 후 이어서 컨테이너 및 Kubernetes, Kubernetes 아키텍처, Kubernetes 작업에 대해 간략히 설명합니다.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.
이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.
이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.
Gen AI is spearheading a revolution in careers. Whether you're seasoned or new to the field, Gen AI holds the key to fresh possibilities. Obtaining a Google Cloud credential in this innovative technology can enhance your resume. And the best part? No prior experience is required.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.