Prangue Christopher
メンバー加入日: 2022
シルバーリーグ
5400 ポイント
メンバー加入日: 2022
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。
ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジ コースと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
SQL だけを使用して、数時間ではなく数分で ML モデルを構築したいとお考えの場合、BigQuery ML は、データ アナリストが既存の SQL ツールやスキルを使って、ML モデルを作成、トレーニング、 評価し、そのモデルで予測を行うことを可能にして、ML をより多くの人が利用できるようにします。 この一連のラボでは、さまざまなモデルタイプを試して、 優れたモデルを作成する方法を学習します。
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの 習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。
Complete the introductory Migrate MySQL data to Cloud SQL using Database Migration Services skill badge to demonstrate skills in the following: migrating MySQL data to Cloud SQL using different job types and connectivity options available in Database Migration Service and migrating MySQL user data when running Database Migration Service jobs. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。
DevOps によって 競争優位性を確保します。DevOps とは、ソフトウェア デリバリーを迅速化し、サービスの信頼性を向上させ、 ソフトウェアの開発と運用に影響を与えるステークホルダーの間で共有の当事者意識を高めることを目的とする、組織的、 文化的な考え方や取り組みです。このクエストでは、Google Cloud を使用して ソフトウェア デリバリーの速度、安定性、可用性、安全性を向上させる方法を学びます。 DevOps Research and Assessment チームが Google Cloud に加わりました。自社の DevOps チームの実力はいかがですか? 5 問の多肢選択式テストで評価してみましょう。
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.