Joseph Wilkes
Menjadi anggota sejak 2022
Gold League
26615 poin
Menjadi anggota sejak 2022
Aplikasi AI generatif dapat mewujudkan pengalaman pengguna baru yang hampir tidak dimungkinkan sebelum ditemukannya model bahasa besar (LLM). Sebagai developer aplikasi, bagaimana cara menggunakan AI generatif untuk membangun aplikasi yang menarik dan canggih di Google Cloud? Dalam kursus ini, Anda akan mempelajari aplikasi AI generatif dan cara Anda dapat menggunakan desain perintah serta retrieval-augmented generation (RAG) untuk membangun aplikasi yang canggih menggunakan LLM. Anda akan mempelajari arsitektur siap produksi yang dapat digunakan untuk aplikasi AI generatif dan Anda akan membangun aplikasi chat LLM berbasis RAG.
In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.
Kursus ini memperkenalkan topik penting tentang privasi dan keamanan AI. Kursus ini mengeksplorasi metode dan alat praktis untuk menerapkan rekomendasi praktik privasi dan keamanan AI melalui penggunaan produk dan alat open source Google Cloud.
Kursus ini memperkenalkan konsep responsible AI dan prinsip AI. Di dalamnya tercakup teknik untuk secara praktis mengidentifikasi keadilan dan bias serta memitigasi bias dalam praktik AI/ML. Kursus ini juga mengeksplorasi metode dan alat praktis untuk menerapkan praktik terbaik Responsible AI menggunakan produk Google Cloud dan alat open source.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Kursus ini memperkenalkan konsep penafsiran dan transparansi AI. Kursus ini membahas pentingnya transparansi AI bagi developer dan engineer. Kursus ini juga mengeksplorasi metode dan alat praktis untuk membantu mencapai penafsiran dan transparansi, baik dalam model data maupun AI.
Kursus ini membekali para praktisi machine learning dengan alat, teknik, dan praktik terbaik penting untuk mengevaluasi model AI generatif dan prediktif. Evaluasi model adalah disiplin ilmu yang sangat penting untuk memastikan sistem ML memberikan hasil yang andal, akurat, dan berperforma tinggi dalam produksi. Peserta akan mendapatkan pemahaman yang mendalam mengenai berbagai metrik evaluasi, metodologi, dan penerapannya yang sesuai di berbagai jenis model dan tugas. Kursus ini akan berfokus pada tantangan unik yang dibuat oleh model AI generatif dan memberikan strategi untuk mengatasinya secara efektif. Dengan memanfaatkan platform Vertex AI di Google Cloud, para peserta akan belajar cara mengimplementasikan proses evaluasi yang kuat untuk melakukan pemilihan, pengoptimalan, dan pemantauan berkelanjutan pada model.
Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.
Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
This course is an introduction to building forecasting solutions with Google Cloud. You start with sequence models and time series foundations. You then walk through an end-to-end workflow: from data preparation to model development and deployment with Vertex AI. Finally, you learn the lessons and tips from a retail use case and apply the knowledge by building your own forecasting models.
Menjelajahi teknologi, alat, dan aplikasi penelusuran yang didukung AI dalam kursus ini. Mempelajari penelusuran semantik dengan memanfaatkan embedding vektor, penelusuran campuran yang menggabungkan pendekatan semantik dan kata kunci, serta Retrieval-Augmented Generation (RAG) yang meminimalkan halusinasi AI sebagai agen AI yang di-grounding. Mendapatkan pengalaman praktis dengan Vertex AI Vector Search untuk membangun mesin telusur yang cerdas.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.