Qi Rong Lai
Menjadi anggota sejak 2022
Menjadi anggota sejak 2022
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
Dapatkan badge keahlian tingkat menengah dengan menyelesaikan kursus Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI, tempat Anda akan belajar cara menggunakan platform Vertex AI Google Cloud, AutoML, dan layanan pelatihan kustom untuk melatih, mengevaluasi, menyesuaikan, menjelaskan, serta men-deploy model machine learning. Kursus badge keahlian ini diperuntukkan bagi Data Scientist dan Engineer Machine Learning profesional. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan Badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
Kursus ini membekali peserta dengan keterampilan untuk membangun solusi yang sangat andal dan efisien di Google Cloud menggunakan pola desain yang telah terbukti. Kursus ini merupakan kelanjutan dari kursus Architecting with Google Compute Engine atau Architecting with Google Kubernetes Engine dan memberikan pengalaman interaktif dengan teknologi yang dibahas dalam kursus tersebut. Melalui kombinasi presentasi, aktivitas desain, dan lab interaktif, peserta akan mempelajari cara menentukan serta menyeimbangkan kebutuhan bisnis dan teknis untuk merancang deployment Google Cloud yang sangat andal, sangat tersedia, aman, dan hemat biaya.
Selesaikan badge keahlian tingkat menengah Mengoptimalkan Biaya untuk Google Kubernetes Engine untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengelola cluster multi-tenant, memantau penggunaan resource berdasarkan namespace, mengonfigurasi penskalaan otomatis pada cluster dan pod untuk tujuan efisiensi, menyiapkan load balancing untuk mengoptimalkan distribusi resource, dan menerapkan pemeriksaan keaktifan serta kesiapan untuk memastikan kondisi aplikasi dan efektivitas biaya. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator yang didukung AI generatif dari Google Cloud, dalam membantu engineer jaringan membuat, mengupdate, dan memelihara jaringan VPC. Anda akan mempelajari cara memanfaatkan Gemini untuk memberikan panduan spesifik untuk tugas-tugas jaringan Anda, lebih dari yang ditawarkan mesin telusur. Dengan menggunakan lab interaktif, Anda akan melihat cara Gemini dalam mempermudah urusan Anda dengan jaringan VPC Google Cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu menganalisis data pelanggan dan memprediksi penjualan produk. Anda juga akan mempelajari cara mengidentifikasi, mengategorikan, dan mengembangkan pelanggan baru menggunakan data pelanggan di BigQuery. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan analisis data dan alur kerja machine learning. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
This course introduces you to event-based applications and teaches you how to use service orchestration and choreography to coordinate microservices. Using lectures and hands-on labs, you learn how to use Workflows, Eventarc, Cloud Tasks, and Cloud Scheduler to build microservices applications on Google Cloud.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu administrator menyediakan infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menjelaskan infrastruktur, men-deploy cluster GKE, dan memperbarui infrastruktur yang ada. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja deployment GKE. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator berteknologi AI generatif dari Google Cloud, membantu developer membangun aplikasi. Anda akan mempelajari cara memanfaatkan Gemini untuk menjelaskan kode, merekomendasikan layanan Google Cloud, dan membuat kode untuk aplikasi Anda. Dengan lab interaktif, Anda akan merasakan peningkatan alur kerja pengembangan aplikasi menggunakan Gemini. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
Gemini untuk Google Workspace adalah add-on yang menyediakan fitur AI generatif bagi pelanggan di Google Workspace. Dalam kursus mini ini, Anda akan mempelajari berbagai fitur penting di Gemini dan cara penggunaannya untuk meningkatkan produktivitas dan efisiensi di Google Slide.
Gemini untuk Google Workspace adalah add-on yang menyediakan fitur AI generatif bagi pelanggan di Google Workspace. Dalam kursus mini ini, Anda akan mempelajari berbagai fitur penting di Gemini dan cara penggunaannya untuk meningkatkan produktivitas dan efisiensi di Google Spreadsheet.
Gemini untuk Google Workspace adalah add-on yang menyediakan akses ke fitur AI generatif bagi pengguna. Kursus ini mempelajari kemampuan Gemini di Google Dokumen dengan menggunakan video pembelajaran, aktivitas langsung, dan contoh praktis. Anda akan mempelajari cara menggunakan Gemini untuk menghasilkan konten tertulis berdasarkan perintah. Anda juga akan mengeksplorasi penggunaan Gemini untuk mengedit teks yang telah ditulis, sehingga membantu Anda meningkatkan produktivitas secara keseluruhan. Di akhir kursus ini, Anda akan dibekali pengetahuan dan keterampilan untuk menggunakan Gemini di Google Dokumen dengan percaya diri demi meningkatkan kualitas tulisan Anda.
Gemini untuk Google Workspace adalah add-on yang menyediakan fitur AI generatif bagi pelanggan di Google Workspace. Dalam kursus mini ini, Anda akan mempelajari berbagai fitur penting di Gemini dan cara penggunaannya untuk meningkatkan produktivitas dan efisiensi di Gmail.
Gemini untuk Google Workspace adalah add-on yang menyediakan fitur AI generatif bagi pelanggan di Google Workspace. Dalam jalur pembelajaran ini, Anda akan mempelajari berbagai fitur penting di Gemini dan cara penggunaannya untuk meningkatkan produktivitas dan efisiensi di Google Workspace.
Welcome to the second course in the networking and Google Cloud series routing and addressing. In this course, we'll cover the central routing and addressing concepts that are relevant to Google Cloud's networking capabilities. Module one will lay the foundation by exploring network routing and addressing in Google Cloud, covering key building blocks such as routing IPv4, bringing your own IP addresses and setting up cloud DNS. In Module two will shift our focus to private connection options, exploring use cases and methods for accessing Google and other services privately using internal IP addresses. By the end of this course, you'll have a solid grasp of how to effectively route and address your network traffic within Google Cloud.
Networking is a principle theme of cloud computing. It’s the underlying structure of Google Cloud, and it’s what connects all your resources and services to one another. This course will cover essential Google Cloud networking services and will give you hands-on practice with specialized tools for developing mature networks. From learning the ins-and-outs of VPCs, to creating enterprise-grade load balancers, Automate Deployment and Manage Traffic on a Google Cloud Network will give you the practical experience needed so you can start building robust networks right away.
Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals. This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques.
Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.
Get Anthos Ready. This Google Kubernetes Engine-centric quest of best practice hands-on labs focuses on security at scale when deploying and managing production GKE environments -- specifically role-based access control, hardening, VPC networking, and binary authorization.
Welcome Gamers! Create and test a prompt, create a conversation, and explore the prompt gallery, all while having fun! Explore Generative AI Studio in Vertex AI. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.
Keamanan adalah fitur layanan Google Cloud yang tidak dapat dikompromikan, dan Google Cloud telah mengembangkan alat khusus untuk memastikan keamanan dan identitas di seluruh project Anda. Dalam kursus pengantar ini, Anda akan melakukan praktik langsung dengan Layanan Identity and Access Management (IAM) Google Cloud, yang merupakan layanan utama untuk mengelola akun pengguna dan virtual machine. Anda akan mendapatkan pengalaman dengan keamanan jaringan dengan menyediakan VPC dan VPN, serta mempelajari alat-alat yang tersedia untuk mendapatkan perlindungan dari ancaman keamanan dan kebocoran data.
Have fun with this interesting game and get some hands on Stackdriver, Docker and Python. Challenge yourself to complete each task as quickly and accurately as possible to score points and earn badges!
Welcome Gamers! You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.