Chris Watson
Participante desde 2020
Liga Prata
9215 pontos
Participante desde 2020
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Este curso é uma introdução aos Notebooks da Vertex AI, que são ambientes baseados em notebooks do Jupyter. Eles fornecem uma plataforma unificada para todo o fluxo de trabalho de machine learning, desde a preparação de dados até a implantação e monitoramento de modelos. Tópicos do curso: (1) Diferentes tipos de Notebooks da Vertex AI e os recursos deles e (2) Como criar e gerenciar Notebooks da Vertex AI.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
Este curso ajuda você a se preparar para o exame Associate Cloud Engineer. Você vai aprender sobre os domínios do Google Cloud abordados no exame e como criar um plano de estudos para melhorar seu conhecimento sobre o assunto.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.